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Pathologists must rapidly interpret microscopic images of a tissue specimen
to provide a diagnosis. To diagnose, a pathologist may additionally consider
or interpret patient history, radiology, specialized histological stains, genetic se-
quencing, etc. Integrating into an accurate predictive model each patient’s di-
verse information is one of many challenges in computational pathology. This
thesis’ scope is computational pathology methods that seek to empower pathol-
ogists by automating tedious work, providing new capabilities, or finding sim-
ilar patient cases. First, we video-recorded pathologists diagnosing at a micro-
scope, and found deep learning could accurately predict where pathologist gaze
would dwell. Such areas may be priority regions of interest for diagnosis. Sec-
ond, we applied deep learning to prostate cancer whole slide images to predict
if a cancerous tumor has a SPOP gene mutation. Such methods may expand
the capabilities of hospitals where genomic sequencing is unavailable. Third,
we integrated histological imaging and clinical information into a multimodal
method to find similar patient cases across social media and notify the pathol-
ogists having these cases. Such a method brings to low-resource hospitals the
subspecialty expertise of pathologists worldwide. Taken together, we conclude
it is practical for such computational methods to empower pathologists on an
international scale. In doing so, we were the first to predict a somatic mutation
from histology images of prostate cancer, we uncovered the utility of pathology

data on social media, and we devised novel methods to interpret deep learning.
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CHAPTER 1
INTRODUCTION

The author makes this chapter available under the terms of a Creative Commons
Attribution-NonCommercial-NoDerivatives [CC-BY-NC-ND] 4.0 International

license, at https://creativecommons.org/licenses/by-nc—nd/4.0/.

1.1 Overview and motivation

Computational pathology demands a tremendous amount of labor from many.
After undergoing decades of training, a pathologist’s clinical service obligations
involve diagnosing potentially hundreds of patient cases daily and entering this
into medical records. Additionally, laboratory staff meticulously follow pro-
tocol to prepare glass microscopy slides for pathologists, sequence genomes,
and perform other tests as needed. Technicians digitally scan glass microscopy
slides whole, archive glass slides, store slide images, and maintain supercom-
puters that run artificial-intelligence-driven computational models to process
these images. Engineers continuously improve all the instruments used, rang-
ing from the clinical laboratory to the datacenter. Informaticists conceive new
computational models to gain insight into pathological processes, often using
data from medical records, genomic sequencing, and whole slide images. All of
this is done in the interests of the patient, who typically must take the time to
come to the hospital and submit a tissue sample, in coordination with adminis-

trative staff, primary care providers, and other specialists.

It would be desirable for all this work to make the world a better place, but

where might one read a plan for how to make the world a better place? We
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observe the United Nations” Sustainable Development Goals outline a 17-point
plan to be a “blueprint to achieve a better and more sustainable future for all”.
Sustainable Development Goal 3: Good Health and Well-Being suggests “en-
suring healthy lives and promoting the well-being at all ages is essential” and
“increased access to physicians” is important!l. To this end, it is recommended
to “[s]ubstantially increase [...] the recruitment, development, training, and re-
tention of the health workforce in developing countries” to achieve “access to
quality essential health care services” for all?. As a way to increase access to
physicians and quality health care services in general, we focus on connecting
pathologists worldwide through computational pathology tools. To us, a world
of connected pathologists means it is easier for pathologists to immediately ob-
tain second opinions from other pathologists anywhere in the world. This con-
nectivity would broaden consensus on the next steps of any patient’s care, po-

tentially confronting even the time pressures of diagnosis during surgery.

1.2 Research development

Timeline and summary Research began with a pilot study of pathologists
making diagnoses at a microscope, which is detailed in Some
ter 2l work was repurposed to identify putative regions of interest for predicting
a gene mutation in prostate cancer, which is detailed in This effort
continues at the time of this writing. To make a more robust search/CBIR tool
than was possible in[chapter 3] this thesis concludes with a study of pathologists
worldwide, to train an artificial intelligence [AI] that can find similar patient
cases on social media (see [chapter 4). A recurring challenge in these computa-

tional pathology projects is a “needle in a haystack problem”. Namely, given


https://www.un.org/sustainabledevelopment/
https://www.un.org/sustainabledevelopment/health/

a whole microscopy slide, it is a challenging for an Al to find a few important
regions of interest to solve a problem, whether the problem is to predict the

patient’s disease or to predict a malignant tumor’s underlying driver mutation.

1.2.1 Microscopy slide region of interest prediction

Challenging for Al to identify regions of interest in a whole slide image
Computational pathology tasks often have a fundamental “needle in a haystack
problem”, where a patient’s glass microscopy slide (i.e. the “haystack”) may be
summarized by a few select regions of interest (i.e. the “needle”), but the loca-
tions of these regions are not explicitly written down for an Al to know from
the beginning. Moreover, a pathologist may examine multiple slides of a pa-
tient and share only one region of interest with pathologist colleagues on social
media to ask for second opinions®l. How might an Al learn to identify where

regions of interest are in any slide?

Video-recording is one of many possible ways to address challenge Indeed,
our second Strategic Aim sought to cross-reference a whole slide image with
a video recording of a pathologist making a diagnosis at a microscope. If a
pathologist spent more than 0.1 seconds looking at a region, then that region
was deemed of interest®]] In a pilot study of two pathologists for prostate
and bladder cancers, we trained a Convolutional Neural Network [CNN] to

accurately predict if a region is of interest to a pathologist making a diagnosis

'The assumption that pathologists will look longer at regions of interest is not without
caveats. One may suggest instead pathologist need only a brief time to immediately recog-
nize diagnostically important regions, while longer looks may indicate a pathologist’s curiosity.
We leave to future work comparisons of pathologist view timings and a pathologist’s explicit
labels of diagnostic importance.



at a microscope. By separating the “needle” of the pathology from the rest of
the “haystack” of the slide, downstream computational methods may be better
able to (i) identify disease in slides, (ii) draw pathologist attention to regions
of interest to save the pathologist time, and (iii) efficiently search through only

regions of interest in large digitized whole slide libraries.

1.2.2 Mutation prediction from cancer histopathology

Predicting SPOP mutation from whole slide images without pathologist in-
tervention The presence or absence of “driver mutations” in a patient’s can-
cer is an alternative way to label microscopy images for an Al to learn, and this
does not require a pathologist’s diagnosis or video-recorded behavior. We stud-
ied the SPOP gene in prostate cancer, which is mutated in “10% of casesPl. Our
method identified regions of interest on the basis of atypical nuclei density. For
these regions we trained ensembles of CNNs to (i) predict if the SPOP gene was
mutated in this patient’s cancer tumor and (ii) estimate the uncertainty in this
prediction, e.g. our method may estimate that a particular patient has a 33-56%

chance of having an in-tumor SPOP mutation.

Challenges in this genomic approach However, predicting underlying muta-
tions that drive malignant growth in a tumor is difficult because some mutations
may not be histologically evident, some mutations may not be histologically dis-
tinguishable from other mutations, and some mutations may be so uncommon
that machine learning is not feasible for such few patient cases. Moreover, be-
tween institutions the clinical protocols may differ in ways that fundamentally

change slide appearance, e.g. microscopy slides are typically prepared as frozen



sections in the TCGA patient cohort while microscopy slides are prepared as
formalin-fixed paraffin-embedded [FFPE] sections in the Memorial Sloan Ket-
tering Cancer Center patient cohort. Freezing damages and tears tissue, but this
does not occur with FFPE sections. It follows that an Al trained on FFPE section

slides may become inaccurate when the Al is tested on frozen section slides!.

Broader impacts of this work Nonetheless, our work is widely cited by
pathology-focused 78910 and computationally-focused 12131413 Jiterature in
the field. We believe our ongoing work is the first to predict a somatic mutation

in prostate cancer from H&E-stained whole slide images alone.

1.2.3 Connecting pathologists through patient case search

If a patient case is challenging, find similar cases to cross-reference In light
of this priority to connect pathologists worldwide, it follows that the the grant
that largely funded this research would involve search, which is formally re-
ferred to as “content-based image retrieval” [CBIR]Fl. Our originally-proposed
search method sought to find similar patient cases in The Cancer Genome Atlas
[TCGA] patient cohort, given photomicrographs from a textbook or microscope.
Our rationale is a pathologist considering a challenging patient case will be in-

terested in similar patient cases, and automated search may find similar cases.

Search connects pathologists who shared similar cases on social media We
later realized photomicrographs of de-identified patient cases are frequently

shared by pathologists through social media and the published literature, so
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RF: Random Forest
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Figure 1.1: Random Forest classification and proximity schematics. A Random Forest
[RF] consists of many Random Trees, e.g. three trees, but typically 1,000 trees are used.
At left a RF classifies a datum (gray circle) according to a majority vote of the trees,
e.g. two votes for the “blue class” and one vote for the “red class” means the datum
is classified as “blue”. Broadly, for our purposes, each datum is an image, and the
Random Forest must classify the image’s depicted disease state (i.e. nontumor, low
grade, or malignant)¥l. At right an RF is reused for search, were two data are considered
similar if they fall into the same leaf of a tree. For example, if images A and B are in the
same leaf for two of the three trees in the RF, then the A-and-B RF similarity/proximity
is 2.

we implemented search tools specifically for these medial'®®l. Powerfully, the
connectivity of social media allows a pathologist to not only find similar cases
through search, but also confer with pathologists who had similar cases. Our
social-media-focused approach to has been well-received in both the search-
focused " and pathology-focused H81%20 Jiterature as our methods developed
over time. Social media has offered a tractable way for us to leverage ma-
chine learning to serve, connect, and study pathologists worldwide. Ultimately,
we implemented an artificial-intelligence-driven social media bot, to both find
pathologists having similar cases and connect these pathologists in a conversa-

tion to discuss the next steps in a patient’s carel®l.

Method interpretability suggests which features are important Our social
media bot’s underlying artificial intelligence [AI] is a machine learning classifier
trained to predict disease state, but this classifier is reused for search (Fig [L.1).

Additionally, this classifier leverages hand-engineered features and shallow
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Figure 1.2: Random Forest interpretability of deep features. (A) We combine deep

learning and shallow learning techniques to accurately classify disease state for patient
cases posted to social medial®l (c.f. Fig . Both before (B) and after (C) training

on patient case data (c.f. Figs4.4/and respectively), we measure Random Forest
feature importance to understand what concepts the deep features from a convolutional

neural network [CNN] have learned to represent. From the before-and-after changes in
Random Forest feature importance one may infer what deep CNN features learned to

represent from the patient case data.

learning (i.e. a Random Forest) to interpret deep learning (i.e. a Convolutional
Neural Network [CNN]) features (Fig[1.2). In this way, we find tissue type (e.g.
breast, dermatological, gastrointestinal, etc), color, and edge features are less im-
portant after CNN training. However, texture features are more important after
CNN training. Therefore, as further explained in our recent work P! we reason
that the CNN learns histopathology-relevant edge, color, and tissue features
from patient cases on social media (which reduces the importance of e.g. hand-
engineered edge and color features after learning), but the deep neural network

may forget histopathology-relevant texture features during learning (which in-



creases the importance of hand-engineered texture features after learning). It
“makes sense” that the CNN learns tissue type is important, e.g. infectious dis-
ease is more common in gastrointestinal tissue than breast tissue. When the
concepts learned make sense broadly, one becomes confident that the Al has

learned to perform a task in ways that make sense too.

1.3 Prevalent themes

1.3.1 Obtaining labeled data of sufficient quantity and diver-

sity

For all strategic aims, we found it is challenging to obtain labeled images in
sufficient quantity and diversity for accurate machine learning in computational

pathology.

Obtaining labeled images

Where a disease is in a slide is often not written down Obtaining labeled
images is a challenge because pathologists are often required to write down
what disease is shown in a small image focused on that disease morphology.
Moreover, because whole slide images are so large, the “needle in a haystack
problem” arises if all that is written down is a patient’s disease, without any
localization of the disease in the slide. The needle in a haystack problem re-
mains for bulk genomic sequencing, e.g. where a machine measures

the presence or absence of a genetic mutation in a tumor, but we do not know



exactly where in a slide the morphological phenotype for this mutation is evi-

dentP!,

Crowd-source among pathologists globally to get more specifics written
down We found the most success from crowd-sourcing image labeling work
across pathologists and other collaborators. For|chapter 4} social media gave our
project worldwide reach to collaborate with pathologists, and mentoring oppor-
tunities afforded us the help of talented High School students to curate datall.
For video-recording pathologists did not disrupt the pathologist’s di-
agnostic workflow, and we did obtain localized timing measurements for all
regions throughout a whole slide image®. However for skipping a
pathologist entirely by relying on genomic sequencing to label the images left us
with both the aforementioned “needle in a haystack problem” and an uncertain

amount of error from genomic sequencing and tumor purity Pl.

Obtaining a sufficient quantity of images

Patient case data in abundance on social media but even more in published
case reports For machine learning generally, more data are always better. This
was especially challenging for because any one pathologist shares
on social media several to hundreds of labeled photomicrographs, but we be-
lieved our machine learning method needed thousands to robustly predict dis-
ease statePl. Moreover, a rare disease may only be seen by a pathologist once
in their career, so we believed we needed over 100,000 photomicrographs to
have any realistic chance of our search tool (i.e. pathobot) finding rare but

similar patient cases. We found that making our search tool freely available


http://twitter.com/pathobot

and easy to use convinced many pathologists worldwide to share data with
us, join our project, and become co-authors of our study. Additionally, public
data from manuscripts in PubMed Central were essential to obtain over 100,000
photomicrographs, making our search tool more comprehensive. It was also
challenging to filter over 1,000,000 manuscripts in PubMed Central to find over
100,0000 hemotoxylin and eosin [H&E] photomicrographs. However, our ma-
chine learning classifier trained to recognize H&E photomicrographs on social

media demonstrated accurate performance and was suitable for this task.

Video recordings provide numerous data across few patient cases We ben-
efited from having comprehensive pathologist timing information throughout
each whole slide studied for [4]. Deep learning could effectively be
applied to these data for accurate predictions. However, the experimental ap-
proach to data collection could not be easily scaled up to many slides or multi-
ple institutions, because a researcher had to physically meet with a pathologist

to obtain video recordings. We were not aware of public data that could have

further supported the deep learning task in|chapter 2|

Public and private data complementary for genomic studies In[chapter 3jwe
leveraged public data from TCGA, as well as private data from Memorial Sloan
Kettering Cancer CenterPl. Despite the large size of these two patient cohorts
and that SPOP is one of the most frequently mutated genes in prostate cancer,
we still needed to request additional scans to digitize glass microscopy slides
for patient cases which had our mutation of interest (i.e. SPOP). SPOP mutation
occurs in “10% of prostate cancer patient cases, so for 1000 patients only 100 typ-

ically have SPOP mutation. There are logistical challenges to involve additional
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private cohorts, and we are not aware of other public cohorts.

Obtaining a sufficient diversity of images

Patient case data from social media highly diverse For the pathol-
ogy images from social media are almost too diversel. Pathologists may take
photomicrographs with a microscope-mounted camera or smartphone. Lab-
oratory and staining protocols differ between institutions and countries, e.g.
saffron may be used in H&E sections in Francell. Pathologists focus on differ-
ent organ systems, each with their own distribution of diseases. For instance,
infectious disease is more common in gastrointestinal and pulmonary tissues
than neurological or breast tissues. Pathologists have different microscopes,
and may illuminate their samples differently. In light of such diversity, some
image normalization may be helpful, e.g. white balance correction. Importantly,
such diversity among the numerous pathologists participating in a study allows
computational methods to be rigorously tested through a “leave one pathologist
out” cross-validation approach. Through “leave one pathologist out” testing, an
Al may be trained on highly diverse data from all pathologists except one. Al
performance is then tested on this one held-out pathologist’s data. This proce-
dure is repeated, with each pathologist held-out in turn for testing, and the test
performance results are averaged to estimate the Al’'s performance in general

for any pathologist.

Video recordings across few patient cases not diverse For the
DeepScope data are likely not diverse enough®l. These data came from a single

institution, so it is not possible to estimate how the method performs in gen-
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eral across institutions. However, it was possible to estimate performance of an
Al trained on one tissue (e.g. bladder cancer) tested on a different tissue (e.g.

prostate cancer).

Histopathology-genomic paired data from different patient cohorts may qual-
itatively differ For the SPOP data are diverse in a difficult-to-
compare manner®l. TCGA data are frozen sections. Memorial Sloan Kettering
Cancer Center data are FFPE sections. Therefore, when measuring performance
when training on one cohort and testing on the other cohort, it may not be clear
if performance changes are due to differences in sectioning protocol. Including

more cohorts for a “leave one cohort out” approach was not logistically possible.

1.3.2 Interaction, iteration, and multimodality matter

Interaction

Interaction facilitates crowd-sourcing Computationally, we found the most
success by making tools pathologists can readily use anywhere worldwide for
freePl. Smartphones and social media are ubiquitous. The vast majority of the
time, a pathologist would use our tools by mentioning “@pathobot” in a social
media post, which is 10 of the maximum 280 characters in a Twitter post. This
accessible user interface allowed our tools to be seamlessly embedded in the

conversations of pathologists worldwide, which facilitated further recruitment

of pathologists to our project.
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Interaction facilitates consensus In pathology, interaction with colleagues is
an important way to establish consensus. For instance, some of our pathologist
collaborators reported working alone. Social media offers a way to compare
one’s own opinion against the opinions of other pathologists. Further, interac-
tion allows a pathologist to use our search tools numerous times for the same
patient case, including different photomicrographs, additional diagnostic terms,
specific morphological descriptions, or special commands each time until the

desired results are obtained.

Iteration

Iterate for improved performance and expanded case database Each time a
pathologist was recruited through pathobot, we curated and integrated their
data into our patient case databasePl. This occurred frequently enough that
we developed the Integrated Pathology Annotator [IPA] tool to help patholo-
gists and other researchers to review the correctness of data annotations. IPA
also automatically regenerates all database files for machine learning. From
these updated data files an updated machine learning classifier may be trained.
We believe iteratively improved classifier performance and an expanded case
database served to further recruit additional pathologists, due in part to social
network effects. Anecdotally, we found that some collaborating pathologists ob-
served our rapid incremental recruitment and would recommend specific col-

leagues to collaborate in our study.

Iterative consensus and search In pathology, iteration may be an important

part of establishing a diagnosis. Pathologists may use social media to not only
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ask for opinions to make a diagnosis, but also ask what tests should be ordered
next to establish a diagnosis. This incremental winnowing of potential diag-
noses from a differential diagnosis may occur though checking patient history,
ordering of specific immunohistochemistry stains, etc. Iteration also allows a
pathologist to use our search tools repeatedly over time as more information
for the case becomes available, or as colleague opinions accumulate for context.
In this way, for a specific patient case in question, the search for similar patient
cases is crowd-sourced as well, across the aggregating opinions of all colleagues

working together to reach consensus for this case.

Multimodality

To diagnose, a pathologist may consider or interpret many modalities besides
H&E, including patient history, radiology, gross sections, specialized histologi-

cal stains, cytological smears, genomic sequencing, and other laboratory tests.

Multimodality in ARDS, DAD, and COVID-19 For example, patient history,
chest X-rays, computed tomography [CT] scans, and genetic risk factors may
be considered for a clinical diagnosis of Acute Respiratory Distress Syndrome
[ARDS]®!. Poor survival among patients with ARDS may make ante-mortem
biopsies difficult to obtain in time for a pathological diagnosis. The histologi-
cal hallmark of ARDS is Diffuse Alveolar Damage [DAD], but multiple causes
of ARDS and DAD existl!l. A polymerase chain reaction [PCR] assay on ad-
jacent tissue blocks or nasopharyngeal swabs may elucidate specific causes of
ARDS/DAD, such as COVID-19 infection??. For COVID-19 patients, H&E sec-
tions may indicate whether a patient died with COVID-19 or from COVID-1913.
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Multimodality in prostate cancer A separate example in contrast is prostate
cancer, where H&E sections are more frequently available while the patient
is still alive. Complementing H&E, genomic sequencing may identify both
“indolent” tumors that require no further treatment and “aggressive” tumors
driven by specific genetic mutations that may require precision medicine to ef-

fectively treat!*!

. Though prostate cancer may be diagnosed on the basis of
H&E sections, the diagnosis may be further informed by laboratory tests such
as serum Prostate Specific Antigen [PSA] levels, or by IHC stains such as p63 or
GATA3P4. Further, clinical/radiological follow-up index of suspicion may be
part of patient care follow-up plans®¥. Thus, in these examples, H&E-stained

microscopy slides may be interpreted in the context of other modalities to es-

tablish diagnosis, guide treatment decisions, and/or determine cause of death.

Multimodality in our methods Indeed, a multimodal diagnostic approach is
so important that pathologists often share multiple modalities in a single social
media post, as reflected in our datal®l. Thus it is essential for computational
pathology methods to handle multiple modalities, even if methods such as ours
for focus on the two most common modalities: H&E and immunohis-
tochemistry [IHC]. Our methods handle H&E explicitly, by training a machine
learning classifier on H&E photomicrographs. IHC is handled as an oversimpli-
tied covariate. Additionally, our methods consider tissue type (e.g. breast, der-
matological, gastrointestinal, etc), which is clinical information passed on to a
pathologist. Further, our hand-engineered and natural-image-trained deep fea-
tures offer a way to generically compare images in a pathology-agnostic man-
ner. Finally, text-based matching allows patient cases with similar diagnoses (or

differential diagnoses) to be matched independently of image data. We intend
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this multimodal approach to offer the greatest value to pathologists searching
for opinions of colleagues having similar patient cases, given as much or as little

information for the case as is immediately available.
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CHAPTER 2
MICROSCOPY SLIDE REGION OF INTEREST PREDICTION FROM
VIDEO RECORDINGS

Portions of this chapter first appeared in Schaumbergf]et al 2017. Schaum-
berg et al 2016 was written in collaboration among Andrew ]. Schaumberg,
Peter ]J. Schiiffler, and Thomas J. Fuchs. S. Joseph Sirintrapun and Hik-
mat A. Al-Ahmadie reviewed Schaumberg et al 2017. The author makes
this chapter available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives [CC-BY-NC-ND] 4.0 International license, at

https://creativecommons.orqg/licenses/by—-nc—-nd/4.0/.

2.1 Scientific background

[2] relies on training data annotated by human ex-

Computational pathology
perts on digital images. However, the bulk of a pathologist’s daily clinical work
remains manual on analog light microscopes. A noninterfering system which

translates this abundance of expert knowledge at the microscope into labeled

digital image data is desired.

Tracking a pathologist’s viewing path along the analyzed tissue slide to
detect local image saliency has been previously proposed. These approaches
include whole slide images displayed on one or more monitors with an eye-
tracker?®, mouse-tracker?” or viewport-tracker?®?? — but may suffer con-

founds including peripheral vision®, head turning®®!, distracting extraneous

*Schaumberg A.]., Joseph Sirintrapun S., Al-Ahmadie H.A., Schiiffler PJ., Fuchs T.]. (2017)
DeepScope: Nonintrusive Whole Slide Saliency Annotation and Prediction from Pathologists at
the Microscope. In: Bracciali A., Caravagna G., Gilbert D., Tagliaferri R. (eds) Computational In-
telligence Methods for Bioinformatics and Biostatistics. CIBB 2016. Lecture Notes in Computer
Science, vol 10477. Springer, Cham
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Figure 2.1: Proposed microscope-based saliency predictor pipeline workflow. The
pathology session is recorded, the slide is scanned, the video frames are registered to
scan patches. Lens change detection guides registration and viewing time is recorded
for periods without motion. A convolutional neural net learns to classify patches as
salient (long looks) or not.

detailZ, monitor resolution® multimonitor curvature®, and monitor bezel
field of view fragmentation®. Because computer customizations may poten-
tially effect viewing times, for studies of pathologists recorded at a computer,
we suggest noting the sensitivity and choice of pointing device, e.g. trackball,
touch pad, touch screen, pointing stick, mouse, and if a scroll wheel or key-
board was available to zoom in or out. Only our approach does not change the
pathologist’s medical practice from the microscope. The microscope is a class I

device appropriate for primary diagnosis according to the United States Food

and Drug Administration, while whole slide imaging devices are class III 36l

In light of the confounds of alternatives, its centuries of use in pathology,
and its favorable regulatory position for primary diagnosis, we believe the mi-
croscope is the gold standard for measuring image region saliency. Indeed, there
is prior work annotating regions of interest at the microscope for cytology tech-

nicians to automatically position the slide for a pathologist®.
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We therefore propose a new, noninterfering workflow for automated video-
based detection of region saliency using pathologist viewing time at the micro-
scope (Fig[2.T). Viewing time is known in the psychology literature to measure
attention®% and we define saliency as pathologist attention when making a
diagnosis. Using a commodity digital camera, rather than a custom embedded
eye-tracking device®"™!1 we video record the pathologist’s entire field of view
at a tandem microscope to obtain slide region viewing times and register these
regions to whole slide image scan regions. Second, we train a convolutional
neural network [CNN] on these observation times to predict whether or not a
whole slide image region is viewed by a pathologist at the microscope for more
than 0.1 seconds [s]. As more videos become available, our CNN predicting

image saliency may be further trained and improved, through online learning.

2.2 Materials and methods

2.2.1 Pathologists

Pathologists were assistant attending rank with several years experience each.

Trainees have different, less efficient, slide viewing strategies %<0,

2.2.2 Patient slides

Two bladder cancer patients were studied by author SJS. Two prostate cancer

patients were studied by author HAA. One slide per patient was used, for four

slides total (Fig [2.2).
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Figure 2.2: Slides and tissues. Bladder cancer left, prostate cancer right. Training,
validation, testing done on top slides, with additional same-tissue testing on bottom
slides. For cross-tissue testing, top slide tested against other top slide. Viewing time
heatmap for top left bladder shown in Fig[2.7] Note how the top bladder has more edges
than the more solid bottom bladder, while the prostates have similar tissue texture. We
believe this impacts interpatient accuracy, shown in Fig

Figure 2.3: Optical flow, showing pixel movement grid. The frame has few moving
pixels before (left) and after (right) pathologist moves the slide. A pathologist looks at a
slide region for the duration of consecutive stationary frames.

2.2.3 Scan preprocessing

Microscope slides, inspected by a pathologist, were scanned at 0.5+0.003 mi-
crons per pixel [px], using an Aperio AT2 scanner. The resulting SVS data file
consists of multiple levels, where level 0 is not downsampled, level 1 is down-
sampled by a factor of 4, level 2 by a factor of 16, and level 3 by a factor of 32.
From each level, 800 x 800 px patches were extracted via the OpenSlide soft-

ware library#2. In bladder, adjacent patches in a level overlap at least 50%, to
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avoid windowing artifacts in registration. In prostate, adjacent patches overlap
at least 75%, to best center the pathologist’s field of view on the little tissue in a
needle biopsy. Patches evenly cover the entire level without gaps. Scans were
either taken before a technician applied marker to the slides, to indicate regions
of interest to the pathologist, or after markings were scrubbed from the slide.
However, these marks were evident in the pathologist videos discussed in the

next section.

2.2.4 Video acquisition

A Panasonic Lumix DMC-FH10 camera with a 16.1 megapixel charge-coupled
device [CCD], capable of 720p motion JPEG video at 30 frames per second fps],
was mounted on a second head of an Olympus BX53F multihead teaching mi-
croscope to record the pathologist’s slide inspection. Microscope objective lens
magnifications were 4x, 10x, 20x, 40x, and 100x. Eyepiece lens magnifications
was 10x. The pathologist was told to ignore the device and person recording
video at the microscope during inspection. The mount (Fig for this camera
was designed in OpenSCAD and 3D-printed on a MakerBot 2 using polylactic
acid [PLA] filament.

2.2.5 Camera choice

Many expensive microscope-mounted cameras exist, such as the Lumenera
INFINITY-HD and Olympus DP27, which have very good picture quality and
frame rate. The Lumenera INFINITY-HD is a CMOS camera, not CCD, so slide
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movement will skew the image rather than blur it, and we did not want to con-
found image registration or motion detection with rolling shutter skew. Both
cameras trim the field of view to a center-most rectangle for viewing on a com-
puter monitor, which is a loss of information, and we instead assign viewing
time to the entire pathologist-viewed 800 x 800 px PNG patch from the SVS
file representing the whole slide scan image. Both cameras do not have USB
or Ethernet ports carrying a video feed accessible as a webcam, for registra-
tion to the whole slide scan. The Olympus DP27 may be accessible as a Win-
dows TWAIN device, but we could not make this work in Linux. Finally, the
HDMI port on both carries high-quality but encrypted video information that
we cannot record, and we did not wish to buy a Hauppauge HDMI record-
ing device, because we had a cheaper commodity camera on hand already. We
also considered automated screenshots of the video feed in Aperio ImageScope
as displayed on a computer monitor, but we observed a lower frame rate and
detecting lens change is complicated because the entire field of view is not avail-
able. Recording low-quality video on a commodity camera to a SecureDigital
[SD] memory card is inexpensive, captures the entire field of view, and is gen-
erally applicable in any hospital. For this pilot study, we used only one camera
for video recording, rather than two different microscope cameras, potentially
eliminating a confound for how many pixels are moving during rapid short
movements of the slide. For 3D printing requisite camera mounts, open source

tools are available.
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Figure 2.4: Image registration. The best image registration for a given video frame
(same frame top left and top right) from the commodity camera at the microscope eye-
piece compared to two different high-quality patches (bottom left and bottom right)
from the whole slide scan image minimizes the length of the green line, which is the
distance from the center of the patch to the center of the frame mapped into the patch’s
coordinate space. The green line’s length is distance d in Alg

2.2.6 Video preprocessing and registration

A Debian Linux computer converted individual slide inspection video frames
to PNG files using the ffmpeg program. OpenCV software detected slide move-
ment via a dense optical flow procedure®*, comparing the current and pre-
ceding video frames, shown in Fig Through this dense optical flow pro-
cedure. we calculated a movement vector for each pixel of each camera video
frame, where a movement vector magnitude of one means the pixel has been
displaced by one pixel in the video frame of interest, with respect to the previ-
ous video frame. Though the details of this procedure are beyond the scope of

this work, a computationally efficient polynomial expansion method explains
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input :/s.4n.: image from commodity camera, a video frame

Iy, 1, .. n-1: N overlapping patch images, together spanning whole
slide

Lysior € Ip 1, .. n-1, the best matching patch from previous video
frame

output: I, € Iy 1, n-1, the best matching patch to /7,4,

S frame <— set of all SURF interest points in 7,4p;

n «— 0, a counter through I, |, y-; images;

npess <— —1, the value of n where 1, is I,

dpest «<— MAXINT, to store the distance between I, and /.4, centers;

while n < N do

if 1, is three or fewer patches spatially removed from I, then

S, «— set of all SURF interest pointsin 7, € Ip.1, _ n-1;

S s «— subset of S /4. points that match SURF feature vector of an
S point;

S s «— subset of S, points that match SURF feature vector of an
S frame pOINt;

T «— rigid body transformation of /,,,. pixel coordinate space
into 1, pixel coordinate space, calculated by point set registration
of RANSAC(S f5, S 1s);

d «— distance in pixels between I, center and T (f,.».) center,
which measures how far off-center /,, is from 1,4e;

if d < dp,., then

Npest < N,
dbest — d/

end

end

n—n+1;

end

return 1,_,,,,, which is Ij.y;

Algorithm 2.1: Automated image registration procedure (Fig to find the
least off-center patch from a given commodity camera video frame. The whole
slide image is split into N overlapping 800 x 800 px patches. “Three or fewer
patches spatially removed” means any /, must be (i) /,ir, (ii) adjacent to 1o,
(iii) adjacent to a patch adjacent to /,,,,, or (iv) adjacent to a patch adjacent to an
I,rior-adjacent patch. In this way, I, is restricted to a spatial neighborhood local-
ized around the prior match, typically improving image registration performance
because most slide movements are small. On lens change, (i) the patch at lower
magnification and (ii) the patches at higher magnification covering the same area
as the current magnification’s neighborhood are considered for registration only.
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Figure 2.5: Lens change detection. The normal non-black pixel bounding box is ini-
tially 415 x 415 px. A change to 415 x 282 px indicates the pathologist changing the
lens, thus changing slide magnification. Note some pixels that may appear black are
called non-black due to difficult to perceive noise in the image, which effects calculated
bounding box size. All images shown at same scale trimmed to bounding box.

a pixel’s movement vector as the previous frame’s pixel neighborhood polyno-
mial transformed under translation to the current frame’s pixel neighborhood
polynomial, where a 39 x 39 px Gaussian weighting function averages pixel

4384 We defined slide movement to start if

movement vectors for smoothing!
10% or more of pixels in the entire field of view of the camera have a move-
ment vector magnitude of at least one, and defined slide movement to stop if
2% or fewer of the pixels in the entire field of view of the camera have a move-
ment magnitude vector of at least one. The entire field of view of the camera is
640 x 480 px, and a small subset of these capture the circular field of view at the
microscope eyepiece, with the remaining pixels being black (Fig[2.3). The rep-
resentative frame among consecutive unmoving frames moved the least. The
Image] ¥ SURFEST| and OpenCV software libraries registered each representa-
tive to an 800 x 800 px image patch taken from the high-resolution Aperio slide

scanner. Each patch aggregated total pathologist time.

The partially automated registration process starts with initial manual reg-
istration of a frame, followed by automated registration within the preceding
registration’s spatial neighborhood (Fig and Alg 2.1). First, (i) a set S frame

of SURF interest points were found in the video frame, (ii) a set S, of SURF

'Image] SURF is released under the GNU GPL and is available for download from
http:/ /labun.com/imagej-surf/
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interest points were found in a slide image patch, (iii) SURF interest point fea-
ture vectors were compared in S .4 and S, to determine which points were
shared in S /,4me and S, and (iv) subsets of S /,.n and S, points that were shared
were then stored in S s, and S, respectively. Points shared between a camera
video frame and an image patch (Fig at left, top and bottom) change de-
pending on the image patch (Fig 2.4 at right, top and bottom). Second, we used
the OpenCV implementation of random sample consensus [RANSAC]¥ for
point set registration, to calculate a rigid body transformation from S ;; point
pixel positions in the video frame to S, point pixel positions in the image patch,
to find the distance in pixels that the video frame is off-center from the patch.
Following this procedure for every image patch in the spatial neighborhood of
the previous image registration, we selected the least off-center image patch
as the best registration, because the pathologist’s fovea is in approximately the
same place in this video frame and image patch. Finally, a manual curation of
registrations ensures correctness. Because slide movements are usually slight,
this automated process reduces manual curation effort because automatic reg-
istrations are rarely far from the correct registration, so after the registration is
corrected within a small localized neighborhood, automatic registrations may

proceed from there. Fully automated image registration is not part of this study.

Slide magnification may change during inspection as the pathologist
changes objective lenses. Lens change is detected automatically when the field
of view bounding box of nonblack pixels changes size (Fig[2.5). SURF is scale-
invariant so registrations may otherwise proceed at an unchanged magnifica-

tion.
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Figure 2.6: CaffeNet architecture: neuron counts, convolutional layers, pooling layers,
dropout® layers, and fully-connected layers shown.

2.2.7 Deep learning

We used Caffel®! for deep learning of convolutional features in a binary clas-
sification model given the 800 x 800 px image patches labeled with pathologist
viewing times in seconds. To adapt for our purpose CaffeNet (Fig[2.6), which is
similar to AlexNetP%, we re-initialized its top layer’s weights after ImageNet™!!
pre-training. Two output neurons were connected to the re-initialized layer,
then training followed on augmented 800 x 800 px patches for 10,000 iterations
in Caffe. In bladder, our model simply predicted whether or not a pathologist
viewed an 800 x 800 px patch more than 0.1 s (30 fps camera). In prostate, due
to the higher overlap between adjacent patches and less tissue available, to be
salient a patch met at least one of these criteria: (1) viewed more than 0.1 s, (2)
immediately above, below, left, or right of at least two patches viewed more
than 0.1 s, or (3) above, below, left, right, or diagonal from at least three patches
viewed more than 0.1 s such that all three are not on the same side. In this
way, image patches highly overlapping in the neighborhood (Alg of salient
patches were not themselves considered nonsalient if a pathologist happened to

jump over them during observation.
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Figure 2.7: Pathologist viewing times in seconds at the microscope for low (left, 10x,
level 2) and high magnification (right, 20x, level 1), registered to the same urothelial
carcinoma slide scan.

2.2.8 Slide magnifications and spatial partitions

Urothelial carcinoma (bladder) in Fig 2.7 was analyzed first, with author HAA
inspecting at the microscope. Viewed regions at the microscope corresponded to
the whole-slide scan SVS file at magnification levels 2 and 1. We restricted our
analysis to level 2, having insufficient level 1 data. We split level 2 into three
portions: left, center, and right. Due to over 50% overlap among the slide’s total
54 800 x 800 px level 2 patches, we excluded the center portion from analysis,

but retained left and right sides, which did not overlap (Fig[2.8).

2.2.9 Viewing time threshold for positive/negative ground

truth

In bladder, we considered a negative example to be a patch viewed for 0.1 s (3
frames or fewer, 30 fps) or less, and a positive example viewed for more than
0.1 s (4 frames or more). This produced 9 positive and 9 negative examples

on the left side, and the same number on the right. We performed three-fold
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Figure 2.8: Scaled image patches of left and right sides of bladder patient 1 slide
(Fig[2.2). Middle excluded here and not used in analysis, to isolate left and right sides
from each other. Note far left and far right have less tissue, but tissue is present for
training. The overlap among patches is evenly distributed and greater than 50%.

cross-validation on the left (6+ and 6- examples training set, 3+ and 3- examples
validation set), then used the model with the highest validation accuracy on
the right to calculate test accuracy, an estimate of generalization error (Fig 2.9).
This cross-validation was duplicated ten times on the left, each time estimating

test accuracy, to calculate a confidence interval. We then duplicated this train-

ing/validating on the left and testing on the right.
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Figure 2.9: Ten three-fold cross-validation trials for bladder [BLCA] and prostate
[PRADY], evaluated for intrapatient training/validating on left while testing on the right
and vice versa. Each model is evaluated against a different patient (interpatient), slides
in Fig[2.2). The needle for prostate cancer biopsy may standardize the distribution of
prostate tissue in the whole slide, maintaining a higher accuracy of the prostate classi-
fier on an interpatient basis than the bladder cancer classifier. The bladder patients are
transurethral resections taken by cuts rather than a standard gauge needle.

2.2.10 Data augmentation

Training and validation data were augmented. For a 800 x 800 px patch, all flips
and one-degree rotations through 360 degrees were saved, then cropped to the
centermost 512 x 512 px, then scaled to 256 x 256 px. This rotation-based data
augmentation biases the neural network to learn rotationally-invariant features
rather than overfit to the training data’s particular orientation, e.g. the angle
of prostate needle biopsy tissue strips. Thus intrapatient and interpatient test
sets are not augmented, but training and validation sets are augmented. The
cancer diagnosis or viewing time in pathology is not expected to change when
rotating or flipping a slide. We direct readers to Krizhevsky et al. 2012FY for
more information on data augmentation. Like Krizhevsky’s data augmentation

of 224 x 224 px random crops for small translations, we further augment our
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dataset through random crops of 227 x 227 px, which is the default for CaffeNet.
Unlike Krizhevsky, we do not augment our dataset through minor perturba-

tions in the principal components of the RGB color space.

In bladder, the augmented training set size was 8,640 patches. This 8,640
count includes rotations and flips, but does not include random crops, which
were performed automatically by Caffe at training time. Caffe randomly
cropped 256 x 256 px patches to 227 x 227 px for each iteration of CaffeNet learn-
ing. No images in the validation set were derived from the training set, and
vice versa. A training set consists of two concatenated folds, with the remain-
ing fold as validation. In addition to the bladder cancer slide, we analogously
processed two prostate cancer needle biopsy slides, with author SJS inspecting

these slides. In prostate, the augmented training set size was 8,160 patches.

2.211 Cross-validation and testing

Training and validation sets are drawn from the same side of the slide, i.e. both
sets on the left or both sets on the right (Fig[2.8). Patches in a training set may
have at least 50% overlap with patches in a validation set. Overlapping regions
of these images have identical sets of pixels, guaranteeing training and valida-
tion sets are exchangeable for valid cross-validation. If training error steadily
decreases while validation error steadily increases, where training and valida-
tion sets are exchangeable, then the classifier is overfit. In contrast, the other
side of the slide is used as a test set and may appear obviously different than
the training and validation sets, e.g. the left side of Fig[2.8 appears different than

the right side. We test the other side to estimate generalization error, which mea-
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sures how the classifier may perform on data unseen at training time. Testing
on the other side of the slide guarantees there is no overlap with the training

set, so the test data is unseen by the classifier at training time.

Different cross-validation schemes are conceivable, such as (i) a top versus
bottom split rather than a left versus right split or (ii) a leave-one-out [LOO]
cross-validation approach. Unfortunately, Fig 2.8/shows a slight overlap in the
row second from the top and the row second from the bottom, effectively reduc-
ing by 25-50% the amount of data for training, validation, and testing compared
to our left versus right approach. Separately, in a LOO setting, one may draw a
test patch, then draw training and validation sets randomly that do not overlap
with the test patch, keeping training and validation set sizes constant for every
possible test patch in the slide. Unfavorably, if the test patch is drawn from
the middle column of the slide, then only the leftmost and rightmost columns
of patches do not overlap with the test patch, reducing the amount of data for
training and validation sets by 33% compared to our left versus right approach.
This 33% reduction for middle test patches is in contrast to the 111% increase in
training and validation data quantity for test patches drawn from the corners of
the leftmost or rightmost columns, where this excess is randomly discarded to
maintain constant training and validation set sizes for all possible test patches.
Moreover, if the test patch is in the bottom row on the right side, the top row on
the right side may be sampled for training, which may inflate the LOO general-
ization accuracy estimate compared to our cross-validation approach that trains
only on the left when testing on the right, due to patches on the right appearing
similar to one another. We show in Section [2.3[that training on the left and test-
ing on the right gives significantly different accuracy compared to training on

the right and testing on the left, suggesting the left and right sides have indeed
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Figure 2.10: Interpatient area under the receiver operating characteristic [AUROC]
for bladder and prostate, with dashed black curve for average AUROC over draws of
the data and blue line for all data used from the patient.

different distributions of information. Thus compared to these alternatives, our
left versus right three-fold cross-validation approach (i) maximizes the sizes of
the training, validation, and test sets, (ii) conservatively estimates generaliza-
tion error by not training the classifier on data that appear similar to the test set,

and (iii) samples each patch on the left or right sides exactly once for an overall

validation error measure for that side.

2.3 Results

In bladder, when training/validating on the left side and testing on the right,
mean test accuracy is 0.781+0.0423 (stdev) with 95% confidence interval [CI]
from 0.750 to 0.811 (df=9, Student’s T, Table . When training/validating on
the right and testing on the left, mean test accuracy is 0.922+0.0468 with 0.889-
0.956 95% CI (Table[2.1). Overall mean test accuracy is 85.15%. The left and right
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Table 2.1: Accuracies of ten trials of three-fold cross-validation in bladder. Valida-
tion and test accuracies for a single slide video of urothelial carcinoma (patient 1, slide
at upper left in Fig performance plotted at left in Fig[2.9)), left side of the slide ver-
sus right side.

Column “Fold0 Valid” reports validation accuracy when folds 1 and 2 were used for training. Similarly, “Fold1 Valid”
is for folds 0 and 2 training. “Valid Acc” is the validation accuracy overall — the average of “Fold0 Valid”, “Fold1 Valid”,
and “Fold2 Valid”. Because we will use a single classifier for saliency prediction, we selected the classifier with highest
validation accuracy and highlighted it yellow, e.g. we selected the FoldO classifier with 0.9218 validation error as shown
in the third row, namely Trial 2 leftright.

Column “Fold0 Test” reports the test accuracy of the classifier trained on folds 1 and 2. Because we will use a single
classifier not an ensemble, we highlight the test accuracy of the classifier selected by highest validation accuracy and
report this in “Test Acc” as generalization accuracy, e.g. we selected the Trial 2 leftright FoldO classifier having “Fold0
Test” of 0.8333 and copied this to “Test Acc”. We report test accuracies for all three classifiers, showing Fold1l and
Fold2 classifiers tie for highest validation accuracy in Trial 1 leftright, so their test accuracies of 0.7222 and 0.7778 were
averaged for a “Test Acc” of 0.7500. As another sanity check in our small data setting, we report that the variance in
the selected-versus-non-selected test accuracy differences is not greater than the selected-versus-non-selected valida-
tion accuracy differences (F-Test p=0.5662 and Bartlett’s Test p=0.5661. Validation differences normally distributed by
Anderson-Darling p=0.08837, and test differences by p=0.1734). If it were greater, there may be experimental setup
problems because training would not be stably producing classifiers that learn the saliency concept. Finally, one may
train a classifier on all folds then evaluate test accuracy with this classifier, but a performance boost from additional
training data may inflate generalization accuracy. In Sec[2.3|we show without such inflation there remains a significant
difference in generalization accuracy and interpatient accuracy in bladder.

Testing the best classifier (highlighted in cyan, highest test accuracy on this and other folds, secondarily highest mean
validation accuracy) on draws of the data on the second bladder patient, accuracies are 0.643, 0.786, 0.714, 0.786, 0.714,
0.714,0.643, 0.571, 0.643, and 0.571.

Directi Trial Fold0 Foldl ©Fold2 Valid Fold0 Foldl Fold2 Test
wecon Al yalid - valid  Valid Acc Test Test Test Acc

leftright 0 0.9466 0.5850 0.9680 0.8332 0.8333 0.7222 0.7778 0.7778
leftright 1 0.8852 0.9070 0.9070 0.8997 0.7778 0.7222 0.7778 0.7500
leftright 2 09218 0.8602 0.8832 0.8884 0.8333 0.7222 0.7778 0.8333
leftright 3 0.7640 0.7812 0.7120 0.7524 0.7778 0.7778 0.7778 0.7778
leftright 4 0.7590 0.6576 0.5134 0.6433 0.8333 0.7778 0.7778 0.8333
leftright 5 0.9268 0.7416 0.5088 0.7257 0.8333 0.7778 0.7778 0.8333
leftright 6 0.8028 0.7988 0.7048 0.7688 0.7222 0.7778 0.7778 0.7222
leftright 7 07318 0.8402 09088 0.8269 0.7778 0.7778 0.7778 0.7778
leftright 8 09572 0.7608 0.8418 0.8533 0.7778 0.8333 0.8333 0.7778
leftright 9 0.7492 0.8774 0.9860 0.8709 0.7778 0.7778 0.7222 0.7222
rightleft 0 0.8802 0.8528 0.8554 0.8628 1.0000 0.8889 0.9444 1.0000
rightleft 1 0.7662 0.5982 0.9364 0.7669 0.8889 0.9444 1.0000 1.0000
rightleft 2 0.9492 0.8560 0.7308 0.8453 0.9444 0.8889 0.9444 0.9444
rightleft 3 0.5404 0.8206 0.8368 0.7326 0.9444 09444 0.8889 0.8889
rightleft 4 0.6560 0.7114 0.6748 0.6807 0.8889 0.8889 0.8333 0.8889
rightleft 5 0.8932 0.7062 0.7310 0.7768 0.9444 0.8889 0.8333 0.9444
rightleft 6 0.8560 0.8540 0.9966 0.9022 0.8889 09444 0.8889 0.8889
rightleft 7 08362 0.8560 0.7978 0.8300 0.8333 0.8889 1.0000 0.8889
rightleft 8 0.7200 0.8546 0.9740 0.8495 1.0000 0.9444 0.8889 0.8889
rightleft 9 0.8634 0.8634 0.6904 0.8057 0.8333 0.9444 1.0000 0.8889
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Table 2.2: Accuracies of ten trials of three-fold cross-validation in prostate. Valida-
tion and test accuracies for a single slide video of prostate adenocarcinoma (patient 1,
slide at upper right in Fig performance plotted at right in Fig[2.9)), left side of the
slide versus right side.

Testing the best classifier on draws of the data on the second prostate patient, accuracies are 0.944, 1, 0.944, 0.944, 1,
0.944,0.944,0.944, 1, and 1.

Fold0 Foldl Fold2 Valid Fold0 Foldl Fold2 Test

Direction  Trial Valid Valid Valid Acc Test Test Test Acc

leftright 0 0.9992 0.9946 1.0000 0.9979 0.7778 0.7778 0.7778 0.7778
leftright 1 09512 0.7282 0.9994 0.8929 0.8889 0.8889 0.8889 0.8889
leftright 2 0.9550 1.0000 0.6530 0.8693 0.8889 0.7778 0.7222 0.7778
leftright 3 0.8636 0.9992 1.0000 0.9543 0.8889 0.7778 09444 0.9444
leftright 4 0.8276 0.7760 0.9940 0.8659 0.8889 0.7778 0.8889 0.8889
leftright 5 0.8654 0.9986 1.0000 0.9547 0.9444 0.9444 09444 0.9444
leftright 6 0.8560 0.9862 0.9992 0.9471 0.8889 0.8889 0.8889 0.8889
leftright 7 08674 1.0000 0.9984 0.9553 0.8889 0.8333 0.8889 0.8333
leftright 8 0.9560 0.8560 0.8760 0.8960 0.8889 0.8333 0.9444 0.8889
leftright 9 0.6846 0.9992 0.9560 0.8799 0.8333 0.8333 1.0000 0.8333
rightleft 0 09786 0.7760 0.9146 0.8897 0.8889 0.9444 1.0000 0.8889
rightleft 1 1.0000 0.7292 0.8460 0.8584 1.0000 0.9444 1.0000 1.0000
rightleft 2 0.7130 0.9512 0.8676 0.8439 0.8889 1.0000 0.8333 1.0000
rightleft 3 0.9998 1.0000 0.9664 0.9887 09444 09444 1.0000 0.9444
rightleft 4 0.7760 1.0000 0.8842 0.8867 0.8889 0.9444 1.0000 0.9444
rightleft 5 09758 0.9984 0.5926 0.8556 0.9444 0.8889 0.9444 0.8889
rightleft 6 0.6344 0.9770 1.0000 0.8705 0.8889 1.0000 1.0000 1.0000
rightleft 7 07760 0.9028 1.0000 0.8929 0.8889 1.0000 1.0000 1.0000
rightleft 8 0.8560 0.8560 0.9992 0.9037 0.9444 0.9444 09444 0.9444
rightleft 9 0.8560 0.9412 0.8538 0.8837 1.0000 1.0000 1.0000 1.0000

test accuracies differ (p=0.000135, Wilcoxon rank-sum, n=20), while validation
accuracies do not (p=0.9118, n=20). This suggests nonhomogenous information
content throughout the slide. Indeed, the pathologist started and ended slide
inspection on the right, and spent double the time on the right versus the left
(Fig 8.32 s right, 4.07 s left). The second bladder had different morphology
and model accuracy reduced to 0.678+0.0772, 0.623-0.734 95% CI. Moreover, the
second bladder had only 7 positive examples available, whereas both prostates

and the first bladder had at least 9 positive examples.

For the first prostate slide, training on the left side and testing on the right,
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we find accuracy 0.867+0.0597, 0.824-0.909 95% CI (Table 2.2). Training on the
right and testing on left, we find 0.961+0.0457, 0.928-0.994 95% CI (Table [2.2).
Overall mean test accuracy is 91.40%. Taking the best model learned from this
first prostate (right side, test accuracy 100%, 18/18), we tested on the second
prostates right side (because the left did not have 9 positive training examples)
and find 0.967+0.0287, 0.946-0.987 95% CI. We also tested this model on the blad-
der cancer slide, and find 0.780 accuracy on the left and 0.720 on the right (9+
and 9- training examples each), mean accuracy 75.00%. The best bladder cancer
model predicts every patch is not salient in both prostates, presumably because

the little tissue in prostate is insufficient for a positive saliency prediction.

Interpatient AUROC for bladder and prostate is shown in Fig In
prostate, nine salient and nine nonsalient examples are drawn from the sec-
ond patient. Average AUROC was calculated from ten such draws, achieving
a meanztstdev of 0.9568+0.0374 and 95% CI of 0.9301-0.9835. Over all 17 salient
and 13 nonsalient patches used from the second prostate patient, the AUROC
is 0.9615. In bladder, due to fewer patches available in the small slide, only
seven salient and seven nonsalient examples are drawn from the second patient.
Average AUROC was calculated for ten such draws, achieving 0.7929+0.1109
and 95% CI of 0.7176-0.8763. Over all 7 salient and 17 nonsalient patches used
from the second bladder patient, the AUROC is 0.7437. These nonoverlapping
confidence intervals are evidence the bladder cancer classifier distinguishes
salient from nonsalient patches less well than the prostate cancer classifier, and
a Wilcoxon rank-sum test indeed finds the difference in classifier performance

by these ten draws each from bladder and prostate is significant (p=0.0001325)
(Fig2.9).
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The deep convolutional network CaffeNet emits a score from 0 to 1 when
predicting if an image patch is salient or not. When taking a score of greater than
0.5 to be salient, the p-value from Fisher’s Exact Test is 1.167e-7 in prostate (16
true positives, 1 false negative, 0 false positives, 13 true negatives) and 0.009916
in bladder (7 true positives, 0 false negatives, 7 false positives, 10 true nega-
tives), indicating our trained CaffeNet classifier in both tissues accurately dis-
tinguishes salient from nonsalient regions when trained on one patient and pre-

dicting in another.

2.4 Conclusion

Collecting image-based expert annotations for the deluge of medical data at
modern hospitals is one of the tightest bottlenecks for the application of large-
scale supervised machine learning. We address this with a novel framework
that combines a commodity camera, 3D-printed mount, and software stack to
build a predictive model for saliency on whole slides, i.e. where a pathologist
looks to make a diagnosis. The registered regions from the digital slide scan are
markedly higher quality than the camera frames, since they do not suffer from
debris, vignetting, and other artifacts. The proposed CNN is able to predict
salient slide regions with a test accuracy of 85-91%. We plan to scale up this

pilot study to more patients, tissues, and pathologists.
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CHAPTER 3
SPOP MUTATION PREDICTION FROM PROSTATE CANCER
HISTOPATHOLOGY
Portions of this chapter first appeared in Schaumbergf| et al 2016. Andrew
J. Schaumberg originally wrote Schaumberg et al 2016, which was editted by
Thomas J. Fuchs and further reviewed by Mark A. Rubi The author makes
this chapter available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives [CC-BY-NC-ND] 4.0 International license, at

https://creativecommons.orqg/licenses/by—-nc—-nd/4.0/.

3.1 Introduction

Genetic drivers of cancer morphology, such as E-Cadherin [CDH1] loss promot-
ing lobular rather than ductal phenotypes in breast, are well known. TMPRSS2-
ERG fusion in prostate cancer has a number of known morphological traits,
including blue-tinged mucin, cribriform pattern, and macronuclei®. Compu-
tational pathology methods!®! typically predict clinical or genetic features as a
function of histological imagery, e.g. whole slide images. Our central hypoth-
esis is that the morphology shown in these whole slide images, having noth-
ing more than standard hematoxylin and eosin [H&E] staining, is a function of
the underlying genetic drivers. To test this hypothesis, we gathered a cohort of
499 prostate adenocarcinoma patients from The Cancer Genome Atlas [TCGAP]
177 of which were suitable for analysis, with 20 of those having mutant SPOP
(Figs and [S3.7). We then used ensembles of deep convolutional neural

*Schaumberg A, Rubin M, and Fuchs T. H&E-stained Whole Slide Deep Learning Predicts
SPOP Mutation State in Prostate Cancer. bioRxiv, page 064279, July 2016. doi:10.1101/064279.

'The ongoing and developing nature of this work is in part reflected in the slight title changes
to the preprint, which is available at https://doi.org/10.1101/064279

2TCGA data courtesy the TCGA Research Network http:/ /cancergenome.nih.gov/
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Figure 3.1: TCGA and MSK-IMPACT slides for SPOP study. (A) TCGA cohort of
frozen section images. Top row shows 20 SPOP mutants. Bottom rows are 157 SPOP
non-mutants, where 25 patients had 2 and 6 patients had 3 acceptable slides avail-
able. (B) MSK-IMPACT cohort of formalin-fixed paraffin-embedded sections, provid-
ing higher image quality than frozens. Top row shows 19 SPOP mutants. Middle rows
show 36 SPOP mutants scanned as added training data for TCGA testing. Bottom rows
are 133 SPOP non-mutants.

networks to accurately predict whether or not SPOP was mutated in the patient,
given only the patient’s whole slide image (Figs| |and[3.4A), leveraging spatial
localization of SPOP mutation evidence in the histology imagery (Fig [3.4B,C)
for statistically significant SPOP mutation prediction accuracy when training

on TCGA but testing on the MSK-IMPACTE cohort (Fig . Further, we
scanned 36 additional SPOP mutant MSK-IMPACT slides, training on this ex-
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Figure 3.2: SPOP mutations in the Integrated Genomics Viewer®253, with lollipop
plot showing mutations in most frequently mutated domain. For two of twenty pa-
tients, somatic SPOP mutations fall outside the MATH domain, responsible for recruit-
ing substrates for ubiquitinylation.

panded MSK-IMPACT cohort and testing on the TCGA cohort. Our classi-
fier’s generalization error bounds (Fig[3.5A,B), receiver operating characteristic
(Fig 3.5IC1,D1), and independent dataset performance (Fig [3.5C2,D2) support
our hypothesis, in agreement with earlier work suggesting SPOP mutants are
a distinct subtype of prostate cancerP. Finally, we applied our metaensemble
classifier to the content-based image retrieval [CBIR] task of finding similar pa-

tients to a given query patient (Fig[3.6), according to SPOP morphology features

evident in the patient slide dominant tumor morphology.

Previously, pathologists described slide image morphologies, then corre-
lated these to molecular aberrations, e.g. mutations and copy number alter-
ationsP7%8, Our deep learning approach instead learns features from the im-
ages without a pathologist, using one mutation as a class label, and quantifies

prediction uncertainty with confidence intervals [CIs] (Fig[ ).

Others used support vector machines to predict molecular subtypes in a bag-
of-features approach over Gabor filters™!. The authors avoided deep learning
due to limited data available. Gabor filters resemble first layer features in a con-

volutional network. A main contribution of ours is using pre-training, Monte
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patient survival prediction. This count is shown to be independent of underly-
ing genetic characteristics, whereas our method predicts a genetic characteristic,

i.e. SPOP mutation, from convolutional features of the imaging.

Clustering patients according to hand-engineered features has been prior
practice in histopathology CBIR, with multiple pathologists providing search
relevancy annotations to tune the search algorithm!®l. Our approach relies on
neither pathologists nor feature engineers, and instead learns discriminative
genetic-histologic relationships in the dominant tumor to find similar patients.
We also do not require a pathologist to identify the dominant tumor, so our
CBIR search is automated on a whole slide basis. Because the entire slide is the
query, we do not require human judgement to formulate a search query, so CBIR

search results may be precalculated and stored for fast lookup.

3.2 Results

3.2.1 Molecular information as labels of pathology image