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Pathologists must rapidly interpret microscopic images of a tissue specimen

to provide a diagnosis. To diagnose, a pathologist may additionally consider

or interpret patient history, radiology, specialized histological stains, genetic se-

quencing, etc. Integrating into an accurate predictive model each patient’s di-

verse information is one of many challenges in computational pathology. This

thesis’ scope is computational pathology methods that seek to empower pathol-

ogists by automating tedious work, providing new capabilities, or finding sim-

ilar patient cases. First, we video-recorded pathologists diagnosing at a micro-

scope, and found deep learning could accurately predict where pathologist gaze

would dwell. Such areas may be priority regions of interest for diagnosis. Sec-

ond, we applied deep learning to prostate cancer whole slide images to predict

if a cancerous tumor has a SPOP gene mutation. Such methods may expand

the capabilities of hospitals where genomic sequencing is unavailable. Third,

we integrated histological imaging and clinical information into a multimodal

method to find similar patient cases across social media and notify the pathol-

ogists having these cases. Such a method brings to low-resource hospitals the

subspecialty expertise of pathologists worldwide. Taken together, we conclude

it is practical for such computational methods to empower pathologists on an

international scale. In doing so, we were the first to predict a somatic mutation

from histology images of prostate cancer, we uncovered the utility of pathology

data on social media, and we devised novel methods to interpret deep learning.
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CHAPTER 1

INTRODUCTION

The author makes this chapter available under the terms of a Creative Commons

Attribution-NonCommercial-NoDerivatives [CC-BY-NC-ND] 4.0 International

license, at https://creativecommons.org/licenses/by-nc-nd/4.0/.

1.1 Overview and motivation

Computational pathology demands a tremendous amount of labor from many.

After undergoing decades of training, a pathologist’s clinical service obligations

involve diagnosing potentially hundreds of patient cases daily and entering this

into medical records. Additionally, laboratory staff meticulously follow pro-

tocol to prepare glass microscopy slides for pathologists, sequence genomes,

and perform other tests as needed. Technicians digitally scan glass microscopy

slides whole, archive glass slides, store slide images, and maintain supercom-

puters that run artificial-intelligence-driven computational models to process

these images. Engineers continuously improve all the instruments used, rang-

ing from the clinical laboratory to the datacenter. Informaticists conceive new

computational models to gain insight into pathological processes, often using

data from medical records, genomic sequencing, and whole slide images. All of

this is done in the interests of the patient, who typically must take the time to

come to the hospital and submit a tissue sample, in coordination with adminis-

trative staff, primary care providers, and other specialists.

It would be desirable for all this work to make the world a better place, but

where might one read a plan for how to make the world a better place? We

1
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observe the United Nations’ Sustainable Development Goals outline a 17-point

plan to be a “blueprint to achieve a better and more sustainable future for all”.

Sustainable Development Goal 3: Good Health and Well-Being suggests “en-

suring healthy lives and promoting the well-being at all ages is essential” and

“increased access to physicians” is important [1]. To this end, it is recommended

to “[s]ubstantially increase [...] the recruitment, development, training, and re-

tention of the health workforce in developing countries” to achieve “access to

quality essential health care services” for all [2]. As a way to increase access to

physicians and quality health care services in general, we focus on connecting

pathologists worldwide through computational pathology tools. To us, a world

of connected pathologists means it is easier for pathologists to immediately ob-

tain second opinions from other pathologists anywhere in the world. This con-

nectivity would broaden consensus on the next steps of any patient’s care, po-

tentially confronting even the time pressures of diagnosis during surgery.

1.2 Research development

Timeline and summary Research began with a pilot study of pathologists

making diagnoses at a microscope, which is detailed in chapter 2. Some chap-

ter 2 work was repurposed to identify putative regions of interest for predicting

a gene mutation in prostate cancer, which is detailed in chapter 3. This effort

continues at the time of this writing. To make a more robust search/CBIR tool

than was possible in chapter 3, this thesis concludes with a study of pathologists

worldwide, to train an artificial intelligence [AI] that can find similar patient

cases on social media (see chapter 4). A recurring challenge in these computa-

tional pathology projects is a “needle in a haystack problem”. Namely, given

2
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a whole microscopy slide, it is a challenging for an AI to find a few important

regions of interest to solve a problem, whether the problem is to predict the

patient’s disease or to predict a malignant tumor’s underlying driver mutation.

1.2.1 Microscopy slide region of interest prediction

Challenging for AI to identify regions of interest in a whole slide image

Computational pathology tasks often have a fundamental “needle in a haystack

problem”, where a patient’s glass microscopy slide (i.e. the “haystack”) may be

summarized by a few select regions of interest (i.e. the “needle”), but the loca-

tions of these regions are not explicitly written down for an AI to know from

the beginning. Moreover, a pathologist may examine multiple slides of a pa-

tient and share only one region of interest with pathologist colleagues on social

media to ask for second opinions [3]. How might an AI learn to identify where

regions of interest are in any slide?

Video-recording is one of many possible ways to address challenge Indeed,

our second Strategic Aim sought to cross-reference a whole slide image with

a video recording of a pathologist making a diagnosis at a microscope. If a

pathologist spent more than 0.1 seconds looking at a region, then that region

was deemed of interest [4]1. In a pilot study of two pathologists for prostate

and bladder cancers, we trained a Convolutional Neural Network [CNN] to

accurately predict if a region is of interest to a pathologist making a diagnosis

1The assumption that pathologists will look longer at regions of interest is not without
caveats. One may suggest instead pathologist need only a brief time to immediately recog-
nize diagnostically important regions, while longer looks may indicate a pathologist’s curiosity.
We leave to future work comparisons of pathologist view timings and a pathologist’s explicit
labels of diagnostic importance.
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at a microscope [4]. By separating the “needle” of the pathology from the rest of

the “haystack” of the slide, downstream computational methods may be better

able to (i) identify disease in slides, (ii) draw pathologist attention to regions

of interest to save the pathologist time, and (iii) efficiently search through only

regions of interest in large digitized whole slide libraries.

1.2.2 Mutation prediction from cancer histopathology

Predicting SPOP mutation from whole slide images without pathologist in-

tervention The presence or absence of “driver mutations” in a patient’s can-

cer is an alternative way to label microscopy images for an AI to learn, and this

does not require a pathologist’s diagnosis or video-recorded behavior. We stud-

ied the SPOP gene in prostate cancer, which is mutated in ˜10% of cases [5]. Our

method identified regions of interest on the basis of atypical nuclei density. For

these regions we trained ensembles of CNNs to (i) predict if the SPOP gene was

mutated in this patient’s cancer tumor and (ii) estimate the uncertainty in this

prediction, e.g. our method may estimate that a particular patient has a 33-56%

chance of having an in-tumor SPOP mutation.

Challenges in this genomic approach However, predicting underlying muta-

tions that drive malignant growth in a tumor is difficult because some mutations

may not be histologically evident, some mutations may not be histologically dis-

tinguishable from other mutations, and some mutations may be so uncommon

that machine learning is not feasible for such few patient cases. Moreover, be-

tween institutions the clinical protocols may differ in ways that fundamentally

change slide appearance, e.g. microscopy slides are typically prepared as frozen
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sections in the TCGA patient cohort while microscopy slides are prepared as

formalin-fixed paraffin-embedded [FFPE] sections in the Memorial Sloan Ket-

tering Cancer Center patient cohort. Freezing damages and tears tissue, but this

does not occur with FFPE sections. It follows that an AI trained on FFPE section

slides may become inaccurate when the AI is tested on frozen section slides [5].

Broader impacts of this work Nonetheless, our work is widely cited by

pathology-focused [6,7,8,9,10] and computationally-focused [11,12,13,14,15] literature in

the field. We believe our ongoing work is the first to predict a somatic mutation

in prostate cancer from H&E-stained whole slide images alone.

1.2.3 Connecting pathologists through patient case search

If a patient case is challenging, find similar cases to cross-reference In light

of this priority to connect pathologists worldwide, it follows that the the grant

that largely funded this research would involve search, which is formally re-

ferred to as “content-based image retrieval” [CBIR] [3]. Our originally-proposed

search method sought to find similar patient cases in The Cancer Genome Atlas

[TCGA] patient cohort, given photomicrographs from a textbook or microscope.

Our rationale is a pathologist considering a challenging patient case will be in-

terested in similar patient cases, and automated search may find similar cases.

Search connects pathologists who shared similar cases on social media We

later realized photomicrographs of de-identified patient cases are frequently

shared by pathologists through social media and the published literature, so
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Figure 1.1: Random Forest classification and proximity schematics. A Random Forest
[RF] consists of many Random Trees, e.g. three trees, but typically 1,000 trees are used.
At left a RF classifies a datum (gray circle) according to a majority vote of the trees,
e.g. two votes for the “blue class” and one vote for the “red class” means the datum
is classified as “blue”. Broadly, for our purposes, each datum is an image, and the
Random Forest must classify the image’s depicted disease state (i.e. nontumor, low
grade, or malignant) [3]. At right an RF is reused for search, were two data are considered
similar if they fall into the same leaf of a tree. For example, if images A and B are in the
same leaf for two of the three trees in the RF, then the A-and-B RF similarity/proximity
is 2.

we implemented search tools specifically for these media [16,3]. Powerfully, the

connectivity of social media allows a pathologist to not only find similar cases

through search, but also confer with pathologists who had similar cases. Our

social-media-focused approach to has been well-received in both the search-

focused [17] and pathology-focused [18,19,20] literature as our methods developed

over time. Social media has offered a tractable way for us to leverage ma-

chine learning to serve, connect, and study pathologists worldwide. Ultimately,

we implemented an artificial-intelligence-driven social media bot, to both find

pathologists having similar cases and connect these pathologists in a conversa-

tion to discuss the next steps in a patient’s care [3].

Method interpretability suggests which features are important Our social

media bot’s underlying artificial intelligence [AI] is a machine learning classifier

trained to predict disease state, but this classifier is reused for search (Fig 1.1).

Additionally, this classifier leverages hand-engineered features and shallow
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B. C.

A. Random Forest classifier trained on
      deep and non-deep features

Figure 1.2: Random Forest interpretability of deep features. (A) We combine deep
learning and shallow learning techniques to accurately classify disease state for patient
cases posted to social media [3] (c.f. Fig 4.3). Both before (B) and after (C) training
on patient case data (c.f. Figs 4.4 and S4.20, respectively), we measure Random Forest
feature importance to understand what concepts the deep features from a convolutional
neural network [CNN] have learned to represent. From the before-and-after changes in
Random Forest feature importance one may infer what deep CNN features learned to
represent from the patient case data.

learning (i.e. a Random Forest) to interpret deep learning (i.e. a Convolutional

Neural Network [CNN]) features (Fig 1.2). In this way, we find tissue type (e.g.

breast, dermatological, gastrointestinal, etc), color, and edge features are less im-

portant after CNN training. However, texture features are more important after

CNN training. Therefore, as further explained in our recent work [3], we reason

that the CNN learns histopathology-relevant edge, color, and tissue features

from patient cases on social media (which reduces the importance of e.g. hand-

engineered edge and color features after learning), but the deep neural network

may forget histopathology-relevant texture features during learning (which in-
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creases the importance of hand-engineered texture features after learning). It

“makes sense” that the CNN learns tissue type is important, e.g. infectious dis-

ease is more common in gastrointestinal tissue than breast tissue. When the

concepts learned make sense broadly, one becomes confident that the AI has

learned to perform a task in ways that make sense too.

1.3 Prevalent themes

1.3.1 Obtaining labeled data of sufficient quantity and diver-

sity

For all strategic aims, we found it is challenging to obtain labeled images in

sufficient quantity and diversity for accurate machine learning in computational

pathology.

Obtaining labeled images

Where a disease is in a slide is often not written down Obtaining labeled

images is a challenge because pathologists are often required to write down

what disease is shown in a small image focused on that disease morphology.

Moreover, because whole slide images are so large, the “needle in a haystack

problem” arises if all that is written down is a patient’s disease, without any

localization of the disease in the slide. The needle in a haystack problem re-

mains for bulk genomic sequencing, e.g. chapter 3, where a machine measures

the presence or absence of a genetic mutation in a tumor, but we do not know
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exactly where in a slide the morphological phenotype for this mutation is evi-

dent [5].

Crowd-source among pathologists globally to get more specifics written

down We found the most success from crowd-sourcing image labeling work

across pathologists and other collaborators. For chapter 4, social media gave our

project worldwide reach to collaborate with pathologists, and mentoring oppor-

tunities afforded us the help of talented High School students to curate data [3].

For chapter 2, video-recording pathologists did not disrupt the pathologist’s di-

agnostic workflow, and we did obtain localized timing measurements for all

regions throughout a whole slide image [4]. However for chapter 3, skipping a

pathologist entirely by relying on genomic sequencing to label the images left us

with both the aforementioned “needle in a haystack problem” and an uncertain

amount of error from genomic sequencing and tumor purity [5].

Obtaining a sufficient quantity of images

Patient case data in abundance on social media but even more in published

case reports For machine learning generally, more data are always better. This

was especially challenging for chapter 4, because any one pathologist shares

on social media several to hundreds of labeled photomicrographs, but we be-

lieved our machine learning method needed thousands to robustly predict dis-

ease state [3]. Moreover, a rare disease may only be seen by a pathologist once

in their career, so we believed we needed over 100,000 photomicrographs to

have any realistic chance of our search tool (i.e. pathobot) finding rare but

similar patient cases. We found that making our search tool freely available
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and easy to use convinced many pathologists worldwide to share data with

us, join our project, and become co-authors of our study. Additionally, public

data from manuscripts in PubMed Central were essential to obtain over 100,000

photomicrographs, making our search tool more comprehensive. It was also

challenging to filter over 1,000,000 manuscripts in PubMed Central to find over

100,0000 hemotoxylin and eosin [H&E] photomicrographs. However, our ma-

chine learning classifier trained to recognize H&E photomicrographs on social

media demonstrated accurate performance and was suitable for this task.

Video recordings provide numerous data across few patient cases We ben-

efited from having comprehensive pathologist timing information throughout

each whole slide studied for chapter 2 [4]. Deep learning could effectively be

applied to these data for accurate predictions. However, the experimental ap-

proach to data collection could not be easily scaled up to many slides or multi-

ple institutions, because a researcher had to physically meet with a pathologist

to obtain video recordings. We were not aware of public data that could have

further supported the deep learning task in chapter 2.

Public and private data complementary for genomic studies In chapter 3 we

leveraged public data from TCGA, as well as private data from Memorial Sloan

Kettering Cancer Center [5]. Despite the large size of these two patient cohorts

and that SPOP is one of the most frequently mutated genes in prostate cancer,

we still needed to request additional scans to digitize glass microscopy slides

for patient cases which had our mutation of interest (i.e. SPOP). SPOP mutation

occurs in ˜10% of prostate cancer patient cases, so for 1000 patients only 100 typ-

ically have SPOP mutation. There are logistical challenges to involve additional
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private cohorts, and we are not aware of other public cohorts.

Obtaining a sufficient diversity of images

Patient case data from social media highly diverse For chapter 4, the pathol-

ogy images from social media are almost too diverse [3]. Pathologists may take

photomicrographs with a microscope-mounted camera or smartphone. Lab-

oratory and staining protocols differ between institutions and countries, e.g.

saffron may be used in H&E sections in France [3]. Pathologists focus on differ-

ent organ systems, each with their own distribution of diseases. For instance,

infectious disease is more common in gastrointestinal and pulmonary tissues

than neurological or breast tissues. Pathologists have different microscopes,

and may illuminate their samples differently. In light of such diversity, some

image normalization may be helpful, e.g. white balance correction. Importantly,

such diversity among the numerous pathologists participating in a study allows

computational methods to be rigorously tested through a “leave one pathologist

out” cross-validation approach. Through “leave one pathologist out” testing, an

AI may be trained on highly diverse data from all pathologists except one. AI

performance is then tested on this one held-out pathologist’s data. This proce-

dure is repeated, with each pathologist held-out in turn for testing, and the test

performance results are averaged to estimate the AI’s performance in general

for any pathologist.

Video recordings across few patient cases not diverse For chapter 2, the

DeepScope data are likely not diverse enough [4]. These data came from a single

institution, so it is not possible to estimate how the method performs in gen-

11



eral across institutions. However, it was possible to estimate performance of an

AI trained on one tissue (e.g. bladder cancer) tested on a different tissue (e.g.

prostate cancer).

Histopathology-genomic paired data from different patient cohorts may qual-

itatively differ For chapter 3, the SPOP data are diverse in a difficult-to-

compare manner [5]. TCGA data are frozen sections. Memorial Sloan Kettering

Cancer Center data are FFPE sections. Therefore, when measuring performance

when training on one cohort and testing on the other cohort, it may not be clear

if performance changes are due to differences in sectioning protocol. Including

more cohorts for a ”leave one cohort out” approach was not logistically possible.

1.3.2 Interaction, iteration, and multimodality matter

Interaction

Interaction facilitates crowd-sourcing Computationally, we found the most

success by making tools pathologists can readily use anywhere worldwide for

free [3]. Smartphones and social media are ubiquitous. The vast majority of the

time, a pathologist would use our tools by mentioning “@pathobot” in a social

media post, which is 10 of the maximum 280 characters in a Twitter post. This

accessible user interface allowed our tools to be seamlessly embedded in the

conversations of pathologists worldwide, which facilitated further recruitment

of pathologists to our chapter 4 project.
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Interaction facilitates consensus In pathology, interaction with colleagues is

an important way to establish consensus. For instance, some of our pathologist

collaborators reported working alone. Social media offers a way to compare

one’s own opinion against the opinions of other pathologists. Further, interac-

tion allows a pathologist to use our search tools numerous times for the same

patient case, including different photomicrographs, additional diagnostic terms,

specific morphological descriptions, or special commands each time until the

desired results are obtained.

Iteration

Iterate for improved performance and expanded case database Each time a

pathologist was recruited through pathobot, we curated and integrated their

data into our patient case database [3]. This occurred frequently enough that

we developed the Integrated Pathology Annotator [IPA] tool to help patholo-

gists and other researchers to review the correctness of data annotations. IPA

also automatically regenerates all database files for machine learning. From

these updated data files an updated machine learning classifier may be trained.

We believe iteratively improved classifier performance and an expanded case

database served to further recruit additional pathologists, due in part to social

network effects. Anecdotally, we found that some collaborating pathologists ob-

served our rapid incremental recruitment and would recommend specific col-

leagues to collaborate in our study.

Iterative consensus and search In pathology, iteration may be an important

part of establishing a diagnosis. Pathologists may use social media to not only
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ask for opinions to make a diagnosis, but also ask what tests should be ordered

next to establish a diagnosis. This incremental winnowing of potential diag-

noses from a differential diagnosis may occur though checking patient history,

ordering of specific immunohistochemistry stains, etc. Iteration also allows a

pathologist to use our search tools repeatedly over time as more information

for the case becomes available, or as colleague opinions accumulate for context.

In this way, for a specific patient case in question, the search for similar patient

cases is crowd-sourced as well, across the aggregating opinions of all colleagues

working together to reach consensus for this case.

Multimodality

To diagnose, a pathologist may consider or interpret many modalities besides

H&E, including patient history, radiology, gross sections, specialized histologi-

cal stains, cytological smears, genomic sequencing, and other laboratory tests.

Multimodality in ARDS, DAD, and COVID-19 For example, patient history,

chest X-rays, computed tomography [CT] scans, and genetic risk factors may

be considered for a clinical diagnosis of Acute Respiratory Distress Syndrome

[ARDS] [21]. Poor survival among patients with ARDS may make ante-mortem

biopsies difficult to obtain in time for a pathological diagnosis. The histologi-

cal hallmark of ARDS is Diffuse Alveolar Damage [DAD], but multiple causes

of ARDS and DAD exist [21]. A polymerase chain reaction [PCR] assay on ad-

jacent tissue blocks or nasopharyngeal swabs may elucidate specific causes of

ARDS/DAD, such as COVID-19 infection [22]. For COVID-19 patients, H&E sec-

tions may indicate whether a patient died with COVID-19 or from COVID-19 [23].
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Multimodality in prostate cancer A separate example in contrast is prostate

cancer, where H&E sections are more frequently available while the patient

is still alive. Complementing H&E, genomic sequencing may identify both

“indolent” tumors that require no further treatment and “aggressive” tumors

driven by specific genetic mutations that may require precision medicine to ef-

fectively treat [24]. Though prostate cancer may be diagnosed on the basis of

H&E sections, the diagnosis may be further informed by laboratory tests such

as serum Prostate Specific Antigen [PSA] levels, or by IHC stains such as p63 or

GATA3 [24]. Further, clinical/radiological follow-up index of suspicion may be

part of patient care follow-up plans [24]. Thus, in these examples, H&E-stained

microscopy slides may be interpreted in the context of other modalities to es-

tablish diagnosis, guide treatment decisions, and/or determine cause of death.

Multimodality in our methods Indeed, a multimodal diagnostic approach is

so important that pathologists often share multiple modalities in a single social

media post, as reflected in our data [3]. Thus it is essential for computational

pathology methods to handle multiple modalities, even if methods such as ours

for chapter 4 focus on the two most common modalities: H&E and immunohis-

tochemistry [IHC]. Our methods handle H&E explicitly, by training a machine

learning classifier on H&E photomicrographs. IHC is handled as an oversimpli-

fied covariate. Additionally, our methods consider tissue type (e.g. breast, der-

matological, gastrointestinal, etc), which is clinical information passed on to a

pathologist. Further, our hand-engineered and natural-image-trained deep fea-

tures offer a way to generically compare images in a pathology-agnostic man-

ner. Finally, text-based matching allows patient cases with similar diagnoses (or

differential diagnoses) to be matched independently of image data. We intend
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this multimodal approach to offer the greatest value to pathologists searching

for opinions of colleagues having similar patient cases, given as much or as little

information for the case as is immediately available.
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CHAPTER 2

MICROSCOPY SLIDE REGION OF INTEREST PREDICTION FROM

VIDEO RECORDINGS

Portions of this chapter first appeared in Schaumberg* et al 2017. Schaum-

berg et al 2016 was written in collaboration among Andrew J. Schaumberg,

Peter J. Schüffler, and Thomas J. Fuchs. S. Joseph Sirintrapun and Hik-

mat A. Al-Ahmadie reviewed Schaumberg et al 2017. The author makes

this chapter available under the terms of a Creative Commons Attribution-

NonCommercial-NoDerivatives [CC-BY-NC-ND] 4.0 International license, at

https://creativecommons.org/licenses/by-nc-nd/4.0/.

2.1 Scientific background

Computational pathology [25] relies on training data annotated by human ex-

perts on digital images. However, the bulk of a pathologist’s daily clinical work

remains manual on analog light microscopes. A noninterfering system which

translates this abundance of expert knowledge at the microscope into labeled

digital image data is desired.

Tracking a pathologist’s viewing path along the analyzed tissue slide to

detect local image saliency has been previously proposed. These approaches

include whole slide images displayed on one or more monitors with an eye-

tracker [26], mouse-tracker [27] or viewport-tracker [28,29] – but may suffer con-

founds including peripheral vision [30], head turning [31], distracting extraneous

*Schaumberg A.J., Joseph Sirintrapun S., Al-Ahmadie H.A., Schüffler P.J., Fuchs T.J. (2017)
DeepScope: Nonintrusive Whole Slide Saliency Annotation and Prediction from Pathologists at
the Microscope. In: Bracciali A., Caravagna G., Gilbert D., Tagliaferri R. (eds) Computational In-
telligence Methods for Bioinformatics and Biostatistics. CIBB 2016. Lecture Notes in Computer
Science, vol 10477. Springer, Cham
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Figure 2.1: Proposed microscope-based saliency predictor pipeline workflow. The
pathology session is recorded, the slide is scanned, the video frames are registered to
scan patches. Lens change detection guides registration and viewing time is recorded
for periods without motion. A convolutional neural net learns to classify patches as
salient (long looks) or not.

detail [32], monitor resolution [33], multimonitor curvature [34], and monitor bezel

field of view fragmentation [35]. Because computer customizations may poten-

tially effect viewing times, for studies of pathologists recorded at a computer,

we suggest noting the sensitivity and choice of pointing device, e.g. trackball,

touch pad, touch screen, pointing stick, mouse, and if a scroll wheel or key-

board was available to zoom in or out. Only our approach does not change the

pathologist’s medical practice from the microscope. The microscope is a class I

device appropriate for primary diagnosis according to the United States Food

and Drug Administration, while whole slide imaging devices are class III [36].

In light of the confounds of alternatives, its centuries of use in pathology,

and its favorable regulatory position for primary diagnosis, we believe the mi-

croscope is the gold standard for measuring image region saliency. Indeed, there

is prior work annotating regions of interest at the microscope for cytology tech-

nicians to automatically position the slide for a pathologist [37].

18



We therefore propose a new, noninterfering workflow for automated video-

based detection of region saliency using pathologist viewing time at the micro-

scope (Fig 2.1). Viewing time is known in the psychology literature to measure

attention [38,39], and we define saliency as pathologist attention when making a

diagnosis. Using a commodity digital camera, rather than a custom embedded

eye-tracking device [40,41], we video record the pathologist’s entire field of view

at a tandem microscope to obtain slide region viewing times and register these

regions to whole slide image scan regions. Second, we train a convolutional

neural network [CNN] on these observation times to predict whether or not a

whole slide image region is viewed by a pathologist at the microscope for more

than 0.1 seconds [s]. As more videos become available, our CNN predicting

image saliency may be further trained and improved, through online learning.

2.2 Materials and methods

2.2.1 Pathologists

Pathologists were assistant attending rank with several years experience each.

Trainees have different, less efficient, slide viewing strategies [26,30].

2.2.2 Patient slides

Two bladder cancer patients were studied by author SJS. Two prostate cancer

patients were studied by author HAA. One slide per patient was used, for four

slides total (Fig 2.2).
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Figure 2.2: Slides and tissues. Bladder cancer left, prostate cancer right. Training,
validation, testing done on top slides, with additional same-tissue testing on bottom
slides. For cross-tissue testing, top slide tested against other top slide. Viewing time
heatmap for top left bladder shown in Fig 2.7. Note how the top bladder has more edges
than the more solid bottom bladder, while the prostates have similar tissue texture. We
believe this impacts interpatient accuracy, shown in Fig 2.9.
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Figure 2.3: Optical flow, showing pixel movement grid. The frame has few moving
pixels before (left) and after (right) pathologist moves the slide. A pathologist looks at a
slide region for the duration of consecutive stationary frames.

2.2.3 Scan preprocessing

Microscope slides, inspected by a pathologist, were scanned at 0.5±0.003 mi-

crons per pixel [px], using an Aperio AT2 scanner. The resulting SVS data file

consists of multiple levels, where level 0 is not downsampled, level 1 is down-

sampled by a factor of 4, level 2 by a factor of 16, and level 3 by a factor of 32.

From each level, 800 × 800 px patches were extracted via the OpenSlide soft-

ware library [42]. In bladder, adjacent patches in a level overlap at least 50%, to
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avoid windowing artifacts in registration. In prostate, adjacent patches overlap

at least 75%, to best center the pathologist’s field of view on the little tissue in a

needle biopsy. Patches evenly cover the entire level without gaps. Scans were

either taken before a technician applied marker to the slides, to indicate regions

of interest to the pathologist, or after markings were scrubbed from the slide.

However, these marks were evident in the pathologist videos discussed in the

next section.

2.2.4 Video acquisition

A Panasonic Lumix DMC-FH10 camera with a 16.1 megapixel charge-coupled

device [CCD], capable of 720p motion JPEG video at 30 frames per second fps],

was mounted on a second head of an Olympus BX53F multihead teaching mi-

croscope to record the pathologist’s slide inspection. Microscope objective lens

magnifications were 4x, 10x, 20x, 40x, and 100x. Eyepiece lens magnifications

was 10x. The pathologist was told to ignore the device and person recording

video at the microscope during inspection. The mount (Fig 2.1) for this camera

was designed in OpenSCAD and 3D-printed on a MakerBot 2 using polylactic

acid [PLA] filament.

2.2.5 Camera choice

Many expensive microscope-mounted cameras exist, such as the Lumenera

INFINITY-HD and Olympus DP27, which have very good picture quality and

frame rate. The Lumenera INFINITY-HD is a CMOS camera, not CCD, so slide
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movement will skew the image rather than blur it, and we did not want to con-

found image registration or motion detection with rolling shutter skew. Both

cameras trim the field of view to a center-most rectangle for viewing on a com-

puter monitor, which is a loss of information, and we instead assign viewing

time to the entire pathologist-viewed 800 × 800 px PNG patch from the SVS

file representing the whole slide scan image. Both cameras do not have USB

or Ethernet ports carrying a video feed accessible as a webcam, for registra-

tion to the whole slide scan. The Olympus DP27 may be accessible as a Win-

dows TWAIN device, but we could not make this work in Linux. Finally, the

HDMI port on both carries high-quality but encrypted video information that

we cannot record, and we did not wish to buy a Hauppauge HDMI record-

ing device, because we had a cheaper commodity camera on hand already. We

also considered automated screenshots of the video feed in Aperio ImageScope

as displayed on a computer monitor, but we observed a lower frame rate and

detecting lens change is complicated because the entire field of view is not avail-

able. Recording low-quality video on a commodity camera to a SecureDigital

[SD] memory card is inexpensive, captures the entire field of view, and is gen-

erally applicable in any hospital. For this pilot study, we used only one camera

for video recording, rather than two different microscope cameras, potentially

eliminating a confound for how many pixels are moving during rapid short

movements of the slide. For 3D printing requisite camera mounts, open source

tools are available.
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Figure 2.4: Image registration. The best image registration for a given video frame
(same frame top left and top right) from the commodity camera at the microscope eye-
piece compared to two different high-quality patches (bottom left and bottom right)
from the whole slide scan image minimizes the length of the green line, which is the
distance from the center of the patch to the center of the frame mapped into the patch’s
coordinate space. The green line’s length is distance d in Alg 2.1.

2.2.6 Video preprocessing and registration

A Debian Linux computer converted individual slide inspection video frames

to PNG files using the ffmpeg program. OpenCV software detected slide move-

ment via a dense optical flow procedure [43,44], comparing the current and pre-

ceding video frames, shown in Fig 2.3. Through this dense optical flow pro-

cedure. we calculated a movement vector for each pixel of each camera video

frame, where a movement vector magnitude of one means the pixel has been

displaced by one pixel in the video frame of interest, with respect to the previ-

ous video frame. Though the details of this procedure are beyond the scope of

this work, a computationally efficient polynomial expansion method explains
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input : I f rame: image from commodity camera, a video frame
I0, 1, ...,N−1: N overlapping patch images, together spanning whole

slide
Iprior ∈ I0, 1, ...,N−1, the best matching patch from previous video

frame
output: Ibest ∈ I0, 1, ...,N−1, the best matching patch to I f rame

S f rame ←− set of all SURF interest points in I f rame;
n←− 0, a counter through I0, 1, ...,N−1 images;
nbest ←− −1, the value of n where In is Ibest;
dbest ←− MAXINT , to store the distance between Ibest and I f rame centers;
while n < N do

if In is three or fewer patches spatially removed from Iprior then
S t ←− set of all SURF interest points in In ∈ I0, 1, ...,N−1;
S f s ←− subset of S f rame points that match SURF feature vector of an
S t point;

S ts ←− subset of S t points that match SURF feature vector of an
S f rame point;

T ←− rigid body transformation of I f rame pixel coordinate space
into In pixel coordinate space, calculated by point set registration
of RANS AC(S f s, S ts);

d ←− distance in pixels between I f rame center and T (I f rame) center,
which measures how far off-center In is from I f rame;

if d < dbest then
nbest ←− n;
dbest ←− d;

end
end
n←− n + 1;

end
return In←−nbest , which is Ibest;

Algorithm 2.1: Automated image registration procedure (Fig 2.4) to find the
least off-center patch from a given commodity camera video frame. The whole
slide image is split into N overlapping 800 × 800 px patches. “Three or fewer
patches spatially removed” means any In must be (i) Iprior, (ii) adjacent to Iprior,
(iii) adjacent to a patch adjacent to Iprior, or (iv) adjacent to a patch adjacent to an
Iprior-adjacent patch. In this way, In is restricted to a spatial neighborhood local-
ized around the prior match, typically improving image registration performance
because most slide movements are small. On lens change, (i) the patch at lower
magnification and (ii) the patches at higher magnification covering the same area
as the current magnification’s neighborhood are considered for registration only.
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1 2 3 4 5 6

Figure 2.5: Lens change detection. The normal non-black pixel bounding box is ini-
tially 415 × 415 px. A change to 415 × 282 px indicates the pathologist changing the
lens, thus changing slide magnification. Note some pixels that may appear black are
called non-black due to difficult to perceive noise in the image, which effects calculated
bounding box size. All images shown at same scale trimmed to bounding box.

a pixel’s movement vector as the previous frame’s pixel neighborhood polyno-

mial transformed under translation to the current frame’s pixel neighborhood

polynomial, where a 39 × 39 px Gaussian weighting function averages pixel

movement vectors for smoothing [43,44]. We defined slide movement to start if

10% or more of pixels in the entire field of view of the camera have a move-

ment vector magnitude of at least one, and defined slide movement to stop if

2% or fewer of the pixels in the entire field of view of the camera have a move-

ment magnitude vector of at least one. The entire field of view of the camera is

640 × 480 px, and a small subset of these capture the circular field of view at the

microscope eyepiece, with the remaining pixels being black (Fig 2.3). The rep-

resentative frame among consecutive unmoving frames moved the least. The

ImageJ [45] SURF [46]1 and OpenCV software libraries registered each representa-

tive to an 800 × 800 px image patch taken from the high-resolution Aperio slide

scanner. Each patch aggregated total pathologist time.

The partially automated registration process starts with initial manual reg-

istration of a frame, followed by automated registration within the preceding

registration’s spatial neighborhood (Fig 2.4 and Alg 2.1). First, (i) a set S f rame

of SURF interest points were found in the video frame, (ii) a set S t of SURF

1ImageJ SURF is released under the GNU GPL and is available for download from
http://labun.com/imagej-surf/
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interest points were found in a slide image patch, (iii) SURF interest point fea-

ture vectors were compared in S f rame and S t to determine which points were

shared in S f rame and S t, and (iv) subsets of S f rame and S t points that were shared

were then stored in S f s and S ts, respectively. Points shared between a camera

video frame and an image patch (Fig 2.4 at left, top and bottom) change de-

pending on the image patch (Fig 2.4 at right, top and bottom). Second, we used

the OpenCV implementation of random sample consensus [RANSAC] [47] for

point set registration, to calculate a rigid body transformation from S f s point

pixel positions in the video frame to S ts point pixel positions in the image patch,

to find the distance in pixels that the video frame is off-center from the patch.

Following this procedure for every image patch in the spatial neighborhood of

the previous image registration, we selected the least off-center image patch

as the best registration, because the pathologist’s fovea is in approximately the

same place in this video frame and image patch. Finally, a manual curation of

registrations ensures correctness. Because slide movements are usually slight,

this automated process reduces manual curation effort because automatic reg-

istrations are rarely far from the correct registration, so after the registration is

corrected within a small localized neighborhood, automatic registrations may

proceed from there. Fully automated image registration is not part of this study.

Slide magnification may change during inspection as the pathologist

changes objective lenses. Lens change is detected automatically when the field

of view bounding box of nonblack pixels changes size (Fig 2.5). SURF is scale-

invariant so registrations may otherwise proceed at an unchanged magnifica-

tion.
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Figure 2.6: CaffeNet architecture: neuron counts, convolutional layers, pooling layers,
dropout [48] layers, and fully-connected layers shown.

2.2.7 Deep learning

We used Caffe [49] for deep learning of convolutional features in a binary clas-

sification model given the 800 × 800 px image patches labeled with pathologist

viewing times in seconds. To adapt for our purpose CaffeNet (Fig 2.6), which is

similar to AlexNet [50], we re-initialized its top layer’s weights after ImageNet [51]

pre-training. Two output neurons were connected to the re-initialized layer,

then training followed on augmented 800 × 800 px patches for 10,000 iterations

in Caffe. In bladder, our model simply predicted whether or not a pathologist

viewed an 800 × 800 px patch more than 0.1 s (30 fps camera). In prostate, due

to the higher overlap between adjacent patches and less tissue available, to be

salient a patch met at least one of these criteria: (1) viewed more than 0.1 s, (2)

immediately above, below, left, or right of at least two patches viewed more

than 0.1 s, or (3) above, below, left, right, or diagonal from at least three patches

viewed more than 0.1 s such that all three are not on the same side. In this

way, image patches highly overlapping in the neighborhood (Alg 2.1) of salient

patches were not themselves considered nonsalient if a pathologist happened to

jump over them during observation.
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Figure 2.7: Pathologist viewing times in seconds at the microscope for low (left, 10x,
level 2) and high magnification (right, 20x, level 1), registered to the same urothelial
carcinoma slide scan.

2.2.8 Slide magnifications and spatial partitions

Urothelial carcinoma (bladder) in Fig 2.7 was analyzed first, with author HAA

inspecting at the microscope. Viewed regions at the microscope corresponded to

the whole-slide scan SVS file at magnification levels 2 and 1. We restricted our

analysis to level 2, having insufficient level 1 data. We split level 2 into three

portions: left, center, and right. Due to over 50% overlap among the slide’s total

54 800 × 800 px level 2 patches, we excluded the center portion from analysis,

but retained left and right sides, which did not overlap (Fig 2.8).

2.2.9 Viewing time threshold for positive/negative ground

truth

In bladder, we considered a negative example to be a patch viewed for 0.1 s (3

frames or fewer, 30 fps) or less, and a positive example viewed for more than

0.1 s (4 frames or more). This produced 9 positive and 9 negative examples

on the left side, and the same number on the right. We performed three-fold
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Figure 2.8: Scaled image patches of left and right sides of bladder patient 1 slide
(Fig 2.2). Middle excluded here and not used in analysis, to isolate left and right sides
from each other. Note far left and far right have less tissue, but tissue is present for
training. The overlap among patches is evenly distributed and greater than 50%.

cross-validation on the left (6+ and 6- examples training set, 3+ and 3- examples

validation set), then used the model with the highest validation accuracy on

the right to calculate test accuracy, an estimate of generalization error (Fig 2.9).

This cross-validation was duplicated ten times on the left, each time estimating

test accuracy, to calculate a confidence interval. We then duplicated this train-

ing/validating on the left and testing on the right.
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Figure 2.9: Ten three-fold cross-validation trials for bladder [BLCA] and prostate
[PRAD], evaluated for intrapatient training/validating on left while testing on the right
and vice versa. Each model is evaluated against a different patient (interpatient), slides
in Fig 2.2). The needle for prostate cancer biopsy may standardize the distribution of
prostate tissue in the whole slide, maintaining a higher accuracy of the prostate classi-
fier on an interpatient basis than the bladder cancer classifier. The bladder patients are
transurethral resections taken by cuts rather than a standard gauge needle.

2.2.10 Data augmentation

Training and validation data were augmented. For a 800× 800 px patch, all flips

and one-degree rotations through 360 degrees were saved, then cropped to the

centermost 512 × 512 px, then scaled to 256 × 256 px. This rotation-based data

augmentation biases the neural network to learn rotationally-invariant features

rather than overfit to the training data’s particular orientation, e.g. the angle

of prostate needle biopsy tissue strips. Thus intrapatient and interpatient test

sets are not augmented, but training and validation sets are augmented. The

cancer diagnosis or viewing time in pathology is not expected to change when

rotating or flipping a slide. We direct readers to Krizhevsky et al. 2012 [50] for

more information on data augmentation. Like Krizhevsky’s data augmentation

of 224 × 224 px random crops for small translations, we further augment our

30



dataset through random crops of 227×227 px, which is the default for CaffeNet.

Unlike Krizhevsky, we do not augment our dataset through minor perturba-

tions in the principal components of the RGB color space.

In bladder, the augmented training set size was 8,640 patches. This 8,640

count includes rotations and flips, but does not include random crops, which

were performed automatically by Caffe at training time. Caffe randomly

cropped 256×256 px patches to 227×227 px for each iteration of CaffeNet learn-

ing. No images in the validation set were derived from the training set, and

vice versa. A training set consists of two concatenated folds, with the remain-

ing fold as validation. In addition to the bladder cancer slide, we analogously

processed two prostate cancer needle biopsy slides, with author SJS inspecting

these slides. In prostate, the augmented training set size was 8,160 patches.

2.2.11 Cross-validation and testing

Training and validation sets are drawn from the same side of the slide, i.e. both

sets on the left or both sets on the right (Fig 2.8). Patches in a training set may

have at least 50% overlap with patches in a validation set. Overlapping regions

of these images have identical sets of pixels, guaranteeing training and valida-

tion sets are exchangeable for valid cross-validation. If training error steadily

decreases while validation error steadily increases, where training and valida-

tion sets are exchangeable, then the classifier is overfit. In contrast, the other

side of the slide is used as a test set and may appear obviously different than

the training and validation sets, e.g. the left side of Fig 2.8 appears different than

the right side. We test the other side to estimate generalization error, which mea-
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sures how the classifier may perform on data unseen at training time. Testing

on the other side of the slide guarantees there is no overlap with the training

set, so the test data is unseen by the classifier at training time.

Different cross-validation schemes are conceivable, such as (i) a top versus

bottom split rather than a left versus right split or (ii) a leave-one-out [LOO]

cross-validation approach. Unfortunately, Fig 2.8 shows a slight overlap in the

row second from the top and the row second from the bottom, effectively reduc-

ing by 25-50% the amount of data for training, validation, and testing compared

to our left versus right approach. Separately, in a LOO setting, one may draw a

test patch, then draw training and validation sets randomly that do not overlap

with the test patch, keeping training and validation set sizes constant for every

possible test patch in the slide. Unfavorably, if the test patch is drawn from

the middle column of the slide, then only the leftmost and rightmost columns

of patches do not overlap with the test patch, reducing the amount of data for

training and validation sets by 33% compared to our left versus right approach.

This 33% reduction for middle test patches is in contrast to the 111% increase in

training and validation data quantity for test patches drawn from the corners of

the leftmost or rightmost columns, where this excess is randomly discarded to

maintain constant training and validation set sizes for all possible test patches.

Moreover, if the test patch is in the bottom row on the right side, the top row on

the right side may be sampled for training, which may inflate the LOO general-

ization accuracy estimate compared to our cross-validation approach that trains

only on the left when testing on the right, due to patches on the right appearing

similar to one another. We show in Section 2.3 that training on the left and test-

ing on the right gives significantly different accuracy compared to training on

the right and testing on the left, suggesting the left and right sides have indeed
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Figure 2.10: Interpatient area under the receiver operating characteristic [AUROC]
for bladder and prostate, with dashed black curve for average AUROC over draws of
the data and blue line for all data used from the patient.

different distributions of information. Thus compared to these alternatives, our

left versus right three-fold cross-validation approach (i) maximizes the sizes of

the training, validation, and test sets, (ii) conservatively estimates generaliza-

tion error by not training the classifier on data that appear similar to the test set,

and (iii) samples each patch on the left or right sides exactly once for an overall

validation error measure for that side.

2.3 Results

In bladder, when training/validating on the left side and testing on the right,

mean test accuracy is 0.781±0.0423 (stdev) with 95% confidence interval [CI]

from 0.750 to 0.811 (df=9, Student’s T, Table 2.1). When training/validating on

the right and testing on the left, mean test accuracy is 0.922±0.0468 with 0.889-

0.956 95% CI (Table 2.1). Overall mean test accuracy is 85.15%. The left and right
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Table 2.1: Accuracies of ten trials of three-fold cross-validation in bladder. Valida-
tion and test accuracies for a single slide video of urothelial carcinoma (patient 1, slide
at upper left in Fig 2.2, performance plotted at left in Fig 2.9)), left side of the slide ver-
sus right side.
Column “Fold0 Valid” reports validation accuracy when folds 1 and 2 were used for training. Similarly, “Fold1 Valid”

is for folds 0 and 2 training. “Valid Acc” is the validation accuracy overall – the average of “Fold0 Valid”, “Fold1 Valid”,

and “Fold2 Valid”. Because we will use a single classifier for saliency prediction, we selected the classifier with highest

validation accuracy and highlighted it yellow, e.g. we selected the Fold0 classifier with 0.9218 validation error as shown

in the third row, namely Trial 2 leftright.

Column “Fold0 Test” reports the test accuracy of the classifier trained on folds 1 and 2. Because we will use a single

classifier not an ensemble, we highlight the test accuracy of the classifier selected by highest validation accuracy and

report this in “Test Acc“ as generalization accuracy, e.g. we selected the Trial 2 leftright Fold0 classifier having “Fold0

Test” of 0.8333 and copied this to “Test Acc”. We report test accuracies for all three classifiers, showing Fold1 and

Fold2 classifiers tie for highest validation accuracy in Trial 1 leftright, so their test accuracies of 0.7222 and 0.7778 were

averaged for a “Test Acc” of 0.7500. As another sanity check in our small data setting, we report that the variance in

the selected-versus-non-selected test accuracy differences is not greater than the selected-versus-non-selected valida-

tion accuracy differences (F-Test p=0.5662 and Bartlett’s Test p=0.5661. Validation differences normally distributed by

Anderson-Darling p=0.08837, and test differences by p=0.1734). If it were greater, there may be experimental setup

problems because training would not be stably producing classifiers that learn the saliency concept. Finally, one may

train a classifier on all folds then evaluate test accuracy with this classifier, but a performance boost from additional

training data may inflate generalization accuracy. In Sec 2.3 we show without such inflation there remains a significant

difference in generalization accuracy and interpatient accuracy in bladder.

Testing the best classifier (highlighted in cyan, highest test accuracy on this and other folds, secondarily highest mean

validation accuracy) on draws of the data on the second bladder patient, accuracies are 0.643, 0.786, 0.714, 0.786, 0.714,

0.714, 0.643, 0.571, 0.643, and 0.571.

Direction Trial
Fold0
Valid

Fold1
Valid

Fold2
Valid

Valid
Acc

Fold0
Test

Fold1
Test

Fold2
Test

Test
Acc

leftright 0 0.9466 0.5850 0.9680 0.8332 0.8333 0.7222 0.7778 0.7778
leftright 1 0.8852 0.9070 0.9070 0.8997 0.7778 0.7222 0.7778 0.7500
leftright 2 0.9218 0.8602 0.8832 0.8884 0.8333 0.7222 0.7778 0.8333
leftright 3 0.7640 0.7812 0.7120 0.7524 0.7778 0.7778 0.7778 0.7778
leftright 4 0.7590 0.6576 0.5134 0.6433 0.8333 0.7778 0.7778 0.8333
leftright 5 0.9268 0.7416 0.5088 0.7257 0.8333 0.7778 0.7778 0.8333
leftright 6 0.8028 0.7988 0.7048 0.7688 0.7222 0.7778 0.7778 0.7222
leftright 7 0.7318 0.8402 0.9088 0.8269 0.7778 0.7778 0.7778 0.7778
leftright 8 0.9572 0.7608 0.8418 0.8533 0.7778 0.8333 0.8333 0.7778
leftright 9 0.7492 0.8774 0.9860 0.8709 0.7778 0.7778 0.7222 0.7222
rightleft 0 0.8802 0.8528 0.8554 0.8628 1.0000 0.8889 0.9444 1.0000
rightleft 1 0.7662 0.5982 0.9364 0.7669 0.8889 0.9444 1.0000 1.0000
rightleft 2 0.9492 0.8560 0.7308 0.8453 0.9444 0.8889 0.9444 0.9444
rightleft 3 0.5404 0.8206 0.8368 0.7326 0.9444 0.9444 0.8889 0.8889
rightleft 4 0.6560 0.7114 0.6748 0.6807 0.8889 0.8889 0.8333 0.8889
rightleft 5 0.8932 0.7062 0.7310 0.7768 0.9444 0.8889 0.8333 0.9444
rightleft 6 0.8560 0.8540 0.9966 0.9022 0.8889 0.9444 0.8889 0.8889
rightleft 7 0.8362 0.8560 0.7978 0.8300 0.8333 0.8889 1.0000 0.8889
rightleft 8 0.7200 0.8546 0.9740 0.8495 1.0000 0.9444 0.8889 0.8889
rightleft 9 0.8634 0.8634 0.6904 0.8057 0.8333 0.9444 1.0000 0.8889
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Table 2.2: Accuracies of ten trials of three-fold cross-validation in prostate. Valida-
tion and test accuracies for a single slide video of prostate adenocarcinoma (patient 1,
slide at upper right in Fig 2.2, performance plotted at right in Fig 2.9)), left side of the
slide versus right side.
Testing the best classifier on draws of the data on the second prostate patient, accuracies are 0.944, 1, 0.944, 0.944, 1,

0.944, 0.944, 0.944, 1, and 1.

Direction Trial
Fold0
Valid

Fold1
Valid

Fold2
Valid

Valid
Acc

Fold0
Test

Fold1
Test

Fold2
Test

Test
Acc

leftright 0 0.9992 0.9946 1.0000 0.9979 0.7778 0.7778 0.7778 0.7778
leftright 1 0.9512 0.7282 0.9994 0.8929 0.8889 0.8889 0.8889 0.8889
leftright 2 0.9550 1.0000 0.6530 0.8693 0.8889 0.7778 0.7222 0.7778
leftright 3 0.8636 0.9992 1.0000 0.9543 0.8889 0.7778 0.9444 0.9444
leftright 4 0.8276 0.7760 0.9940 0.8659 0.8889 0.7778 0.8889 0.8889
leftright 5 0.8654 0.9986 1.0000 0.9547 0.9444 0.9444 0.9444 0.9444
leftright 6 0.8560 0.9862 0.9992 0.9471 0.8889 0.8889 0.8889 0.8889
leftright 7 0.8674 1.0000 0.9984 0.9553 0.8889 0.8333 0.8889 0.8333
leftright 8 0.9560 0.8560 0.8760 0.8960 0.8889 0.8333 0.9444 0.8889
leftright 9 0.6846 0.9992 0.9560 0.8799 0.8333 0.8333 1.0000 0.8333
rightleft 0 0.9786 0.7760 0.9146 0.8897 0.8889 0.9444 1.0000 0.8889
rightleft 1 1.0000 0.7292 0.8460 0.8584 1.0000 0.9444 1.0000 1.0000
rightleft 2 0.7130 0.9512 0.8676 0.8439 0.8889 1.0000 0.8333 1.0000
rightleft 3 0.9998 1.0000 0.9664 0.9887 0.9444 0.9444 1.0000 0.9444
rightleft 4 0.7760 1.0000 0.8842 0.8867 0.8889 0.9444 1.0000 0.9444
rightleft 5 0.9758 0.9984 0.5926 0.8556 0.9444 0.8889 0.9444 0.8889
rightleft 6 0.6344 0.9770 1.0000 0.8705 0.8889 1.0000 1.0000 1.0000
rightleft 7 0.7760 0.9028 1.0000 0.8929 0.8889 1.0000 1.0000 1.0000
rightleft 8 0.8560 0.8560 0.9992 0.9037 0.9444 0.9444 0.9444 0.9444
rightleft 9 0.8560 0.9412 0.8538 0.8837 1.0000 1.0000 1.0000 1.0000

test accuracies differ (p=0.000135, Wilcoxon rank-sum, n=20), while validation

accuracies do not (p=0.9118, n=20). This suggests nonhomogenous information

content throughout the slide. Indeed, the pathologist started and ended slide

inspection on the right, and spent double the time on the right versus the left

(Fig 2.7, 8.32 s right, 4.07 s left). The second bladder had different morphology

and model accuracy reduced to 0.678±0.0772, 0.623-0.734 95% CI. Moreover, the

second bladder had only 7 positive examples available, whereas both prostates

and the first bladder had at least 9 positive examples.

For the first prostate slide, training on the left side and testing on the right,
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we find accuracy 0.867±0.0597, 0.824-0.909 95% CI (Table 2.2). Training on the

right and testing on left, we find 0.961±0.0457, 0.928-0.994 95% CI (Table 2.2).

Overall mean test accuracy is 91.40%. Taking the best model learned from this

first prostate (right side, test accuracy 100%, 18/18), we tested on the second

prostates right side (because the left did not have 9 positive training examples)

and find 0.967±0.0287, 0.946-0.987 95% CI. We also tested this model on the blad-

der cancer slide, and find 0.780 accuracy on the left and 0.720 on the right (9+

and 9- training examples each), mean accuracy 75.00%. The best bladder cancer

model predicts every patch is not salient in both prostates, presumably because

the little tissue in prostate is insufficient for a positive saliency prediction.

Interpatient AUROC for bladder and prostate is shown in Fig 2.10. In

prostate, nine salient and nine nonsalient examples are drawn from the sec-

ond patient. Average AUROC was calculated from ten such draws, achieving

a mean±stdev of 0.9568±0.0374 and 95% CI of 0.9301-0.9835. Over all 17 salient

and 13 nonsalient patches used from the second prostate patient, the AUROC

is 0.9615. In bladder, due to fewer patches available in the small slide, only

seven salient and seven nonsalient examples are drawn from the second patient.

Average AUROC was calculated for ten such draws, achieving 0.7929±0.1109

and 95% CI of 0.7176-0.8763. Over all 7 salient and 17 nonsalient patches used

from the second bladder patient, the AUROC is 0.7437. These nonoverlapping

confidence intervals are evidence the bladder cancer classifier distinguishes

salient from nonsalient patches less well than the prostate cancer classifier, and

a Wilcoxon rank-sum test indeed finds the difference in classifier performance

by these ten draws each from bladder and prostate is significant (p=0.0001325)

(Fig 2.9).
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The deep convolutional network CaffeNet emits a score from 0 to 1 when

predicting if an image patch is salient or not. When taking a score of greater than

0.5 to be salient, the p-value from Fisher’s Exact Test is 1.167e-7 in prostate (16

true positives, 1 false negative, 0 false positives, 13 true negatives) and 0.009916

in bladder (7 true positives, 0 false negatives, 7 false positives, 10 true nega-

tives), indicating our trained CaffeNet classifier in both tissues accurately dis-

tinguishes salient from nonsalient regions when trained on one patient and pre-

dicting in another.

2.4 Conclusion

Collecting image-based expert annotations for the deluge of medical data at

modern hospitals is one of the tightest bottlenecks for the application of large-

scale supervised machine learning. We address this with a novel framework

that combines a commodity camera, 3D-printed mount, and software stack to

build a predictive model for saliency on whole slides, i.e. where a pathologist

looks to make a diagnosis. The registered regions from the digital slide scan are

markedly higher quality than the camera frames, since they do not suffer from

debris, vignetting, and other artifacts. The proposed CNN is able to predict

salient slide regions with a test accuracy of 85-91%. We plan to scale up this

pilot study to more patients, tissues, and pathologists.
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CHAPTER 3

SPOP MUTATION PREDICTION FROM PROSTATE CANCER

HISTOPATHOLOGY

Portions of this chapter first appeared in Schaumberg* et al 2016. Andrew

J. Schaumberg originally wrote Schaumberg et al 2016, which was editted by

Thomas J. Fuchs and further reviewed by Mark A. Rubin1. The author makes

this chapter available under the terms of a Creative Commons Attribution-

NonCommercial-NoDerivatives [CC-BY-NC-ND] 4.0 International license, at

https://creativecommons.org/licenses/by-nc-nd/4.0/.

3.1 Introduction

Genetic drivers of cancer morphology, such as E-Cadherin [CDH1] loss promot-

ing lobular rather than ductal phenotypes in breast, are well known. TMPRSS2-

ERG fusion in prostate cancer has a number of known morphological traits,

including blue-tinged mucin, cribriform pattern, and macronuclei [54]. Compu-

tational pathology methods [25] typically predict clinical or genetic features as a

function of histological imagery, e.g. whole slide images. Our central hypoth-

esis is that the morphology shown in these whole slide images, having noth-

ing more than standard hematoxylin and eosin [H&E] staining, is a function of

the underlying genetic drivers. To test this hypothesis, we gathered a cohort of

499 prostate adenocarcinoma patients from The Cancer Genome Atlas [TCGA]2,

177 of which were suitable for analysis, with 20 of those having mutant SPOP

(Figs 3.1, 3.2, and S3.7). We then used ensembles of deep convolutional neural

*Schaumberg A, Rubin M, and Fuchs T. H&E-stained Whole Slide Deep Learning Predicts
SPOP Mutation State in Prostate Cancer. bioRxiv, page 064279, July 2016. doi:10.1101/064279.

1The ongoing and developing nature of this work is in part reflected in the slight title changes
to the preprint, which is available at https://doi.org/10.1101/064279

2TCGA data courtesy the TCGA Research Network http://cancergenome.nih.gov/
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A.

B.

Figure 3.1: TCGA and MSK-IMPACT slides for SPOP study. (A) TCGA cohort of
frozen section images. Top row shows 20 SPOP mutants. Bottom rows are 157 SPOP
non-mutants, where 25 patients had 2 and 6 patients had 3 acceptable slides avail-
able. (B) MSK-IMPACT cohort of formalin-fixed paraffin-embedded sections, provid-
ing higher image quality than frozens. Top row shows 19 SPOP mutants. Middle rows
show 36 SPOP mutants scanned as added training data for TCGA testing. Bottom rows
are 133 SPOP non-mutants.

networks to accurately predict whether or not SPOP was mutated in the patient,

given only the patient’s whole slide image (Figs ?? and 3.4A), leveraging spatial

localization of SPOP mutation evidence in the histology imagery (Fig 3.4B,C)

for statistically significant SPOP mutation prediction accuracy when training

on TCGA but testing on the MSK-IMPACT [55] cohort (Fig 3.5). Further, we

scanned 36 additional SPOP mutant MSK-IMPACT slides, training on this ex-
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Figure 3.2: SPOP mutations in the Integrated Genomics Viewer [52,53], with lollipop
plot showing mutations in most frequently mutated domain. For two of twenty pa-
tients, somatic SPOP mutations fall outside the MATH domain, responsible for recruit-
ing substrates for ubiquitinylation.

panded MSK-IMPACT cohort and testing on the TCGA cohort. Our classi-

fier’s generalization error bounds (Fig 3.5A,B), receiver operating characteristic

(Fig 3.5C1,D1), and independent dataset performance (Fig 3.5C2,D2) support

our hypothesis, in agreement with earlier work suggesting SPOP mutants are

a distinct subtype of prostate cancer [56]. Finally, we applied our metaensemble

classifier to the content-based image retrieval [CBIR] task of finding similar pa-

tients to a given query patient (Fig 3.6), according to SPOP morphology features

evident in the patient slide dominant tumor morphology.

Previously, pathologists described slide image morphologies, then corre-

lated these to molecular aberrations, e.g. mutations and copy number alter-

ations [57,58]. Our deep learning approach instead learns features from the im-

ages without a pathologist, using one mutation as a class label, and quantifies

prediction uncertainty with confidence intervals [CIs] (Fig ??).

Others used support vector machines to predict molecular subtypes in a bag-

of-features approach over Gabor filters [59]. The authors avoided deep learning

due to limited data available. Gabor filters resemble first layer features in a con-

volutional network. A main contribution of ours is using pre-training, Monte
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patient survival prediction. This count is shown to be independent of underly-

ing genetic characteristics, whereas our method predicts a genetic characteristic,

i.e. SPOP mutation, from convolutional features of the imaging.

Clustering patients according to hand-engineered features has been prior

practice in histopathology CBIR, with multiple pathologists providing search

relevancy annotations to tune the search algorithm [63]. Our approach relies on

neither pathologists nor feature engineers, and instead learns discriminative

genetic-histologic relationships in the dominant tumor to find similar patients.

We also do not require a pathologist to identify the dominant tumor, so our

CBIR search is automated on a whole slide basis. Because the entire slide is the

query, we do not require human judgement to formulate a search query, so CBIR

search results may be precalculated and stored for fast lookup.

3.2 Results

3.2.1 Molecular information as labels of pathology images

opens a new field of molecular pathology

Rather than correlating or combining genetic and histologic data, we predict

a gene mutation directly from a whole slide image with unbiased H&E stain.

Our methods enable systematic investigation of other genotype and pheno-

type relationships, and serve as a new supervised learning paradigm for clin-

ically actionable molecular targets, independent of clinician-supplied labels of

the histology. Epigenetic, copy number alteration, gene expression, and post-
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mutation probability (Fig 3.6). A patient’s histology may be studied in the con-

text of similar patients’ for diagnostic, prognostic, and theragnostic considera-

tions.

3.2.6 Molecular pathology, such as characterizing histology in

terms of SPOP mutation state, leads directly to precision

medicine

For instance, non-mutant SPOP ubiquitinylates androgen receptor [AR], to

mark AR for degradation, but mutant SPOP does not. Antiandrogen drugs,

such as flutamide and enzalutamide, promote degradation of AR to treat the

cancer, though mutant AR confers resistance [65,66].

3.2.7 SPOP mutation state prediction provides information re-

garding other molecular states

SPOP mutation is mutually exclusive with TMPRSS2-ERG gene fusion [56],

so our SPOP mutation predictor provides indirect information regarding the

TMPRSS2-ERG state and potentially others.
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(0) or all mutant (1). Thus on MSK-IMPACT, the TCGA metaensemble assigned

stochastically greater scores to mutants than non-mutants (AUROC 0.86) and

accurately distinguished mutants from non-mutants (Fisher’s Exact p=0.00379)

(Fig 3.5C2). Moreover on TCGA, the MSK-IMPACT metaensemble assigned

stochastically greater scores to mutants than non-mutants (AUROC 0.64) and

accurately distinguished mutants from non-mutants (Fisher’s Exact p=0.03056)

(Fig 3.5D2).

3.4.3 CBIR evaluation

The metaensemble consists of seven ensembles. Each ensemble predicts SPOP

mutation probability as a uniformly distributed random variable (Fig S3.8).

Each ensemble is tuned to a different test set (Sec S3.5.6 and Table S3.1), so

we treat each ensemble’s prediction as a feature, for seven 32-bit SPOP CBIR

features total. For CBIR, a patient’s dissimilarity to the query patient is the

mean of absolute differences in these seven features, e.g. a dissimilarity of 0.2

means on average an ensemble predicts the patient’s SPOP mutation probabil-

ity is 0.2 different than the query. A similarity score is 1 minus dissimilarity.

We evaluated the TCGA-trained metaensemble on each of the 19 SPOP mu-

tants in MSK-IMPACT (Fig 3.1), for each mutant calculating a CBIR p-value,

with a low p-value indicating it is not due to chance alone that dissimilarities

of mutants were lower than non-mutant dissimilarities (Fig 3.6). To conduct

a metaanalysis of these 19 dependent p-values, we may use neither (a) Fisher’s

Method [71] because our p-values are not independent, nor (b) Empirical Brown’s

Method [72] because 100 p-values are required for convergence, so we used Kost’s
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between the central patch and a surrounding patch is the same as the dis-

tance between any two adjacent surrounding patches. All patches had the

same label, either 1 for patients with somatic SPOP mutation or 0 for pa-

tients without somatic SPOP mutation. This approximately circular region

of nine patches per patient provides more information for training, more

closely resembles the region available from a circle of tissue in a TMA,

and does not sample far away tissues that may have different molecular

drivers of disease.

4. The test set consists of a single patch per patient, without a surrounding

octagon of eight patches. Test accuracy and squared loss were optimized

from the converged trained models having at least 0.6 validation accuracy,

i.e. the “sel” ensembles in Fig S3.10. This optimization selected at most

one model from 11 of 13 Monte Carlo cross validation runs, where the se-

lection of 11 models for the ensemble had the highest accuracy and lowest

squared loss on the test set. This (a) ensures on unseen data the ensemble

has both the discriminative power and diversity to correctly predict Plearn,

which is a function of a single image, and (b) optimizes each ensemble

according to a different test set, with the aim of decorrelating ensembles

for a more general metaensemble, much like how decision trees should be

decorrelated for a more general random forest [70].

S3.5.7 MSK-IMPACT dataset testing

See Fig 3.5C2,C3 for MSK-IMPACT testing of the TCGA-trained metaensemble.

Testing was as follows, and the analogous procedure holds for TCGA testing of

the MSK-IMPACT-trained metaensemble (Fig 3.5D2,D3):
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Figure S3.9: Ensemble performance, for comparison to ensemble performance in
Fig 3.5C1. Classifiers in ensemble selected by highest validation accuracy. This esti-
mates performance on unseen data. Performance for the classifiers instead selected by
highest test set accuracy is shown in Fig S3.10.

Microscope slides were scanned at 0.25 ± 0.003 microns per pixel [µpp], us-

ing an Aperio AT2 scanner. The resulting SVS data file consists of multiple

levels, where level 0 is not downsampled, level 1 is downsampled by a factor

of 4, level 2 by a factor of 16, and level 3 by a factor of 32. From each level,

800x800px patches were extracted via the OpenSlide software library [42]. We re-

fer to level 2 as low magnification and level 0 as high magnification. Level 2

approximately corresponds to a 10x eyepiece lens and 10x objective lens at the

microscope when the scan is 0.5µpp. Our saliency predictor assumed 0.5µpp

scans, though the scans here were 0.25µpp, but appeared robust.
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Figure S3.10: Tuned ensemble performance, for comparison to ensemble performance
in Fig 3.5C. The tuned ensembles are used for prediction on the independent MSK-
IMPACT cohort (Fig 3.5C2,C3). Tuning provides limited additional training for each
ensemble via model selection on the corresponding TCGA test set. Tuned ensemble
mutation prediction distributions shown in Fig S3.8.

Algorithm 3.1 describes data preprocessing for training. In prior work, we

developed a patch saliency predictor [67]. A TMARKER classifier was trained

to determine cell types [75]. We define the dominant tumor patch as having the

maximum number of cancer cells of all 800x800px salient patches at low magni-

fication. Within the 800x800px dominant tumor patch, we select an 800x800px

patch at high magnification having the maximum number of abnormal cells.

Malignant cells count 1 towards the maximum abnormal cell count, unknown

cells count 0.5, and healthy cells count 0. The dominant tumor is explored in
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increments of 10 pixels, until the bounding box with the maximum number of

abnormal cells is found. Whereas our saliency predictor operated on low-power

tissue-level details of a patch, our SPOP predictor operates on high-power cell-

level details of a patch. A patient is discarded from the study if the abnormal

patch over-stained eosin blue, or is >50% blurred, or is >50% background, or is

>50% blood – as determined by visual inspection.

Algorithm 3.2 describes the neural network ensemble for training. This pro-

cedure allows learning to occur despite a mere 20 patients having an SPOP mu-

tation, compared to 157 not having an SPOP mutation. Additionally, having

5 ensembles – each trial yielding one ensemble of 11 ResNets – allows a CI

in predicted SPOP mutation state to be calculated for both the generalization

error estimate during training and any future patient (Algorithm 3.3). More-

over, such a large number of ResNets can fully sample the SPOP non-mutant

patients, while each ResNet is still trained with an equal proportion of SPOP

mutants and non-mutants. We use two neural network architectures, both the

published ResNet-50 architecture (r50 in Alg 3.2) and our custom ResNet-50

with a 50% dropout [48] layer with an additional 1024 fully-connected layer as

the top layer (drp5 in Alg 3.2, and shown as Drop50 in Fig 3.4). In practice, at

least one architecture tended to have validation accuracy ≥ 0.6. Architecture di-

versity may increase intra-ensemble ResNet variance, and the decorrelation in

errors should average out in the ensemble. Trials 0, 2, and 3 used two Drop50

learners and nine ResNet-50 classifiers (Fig 3.4, Table S3.1). Trial 1 had six and

five, respectively. Trial 4 had three and eight. Trials 1 and 4 had the worst per-

formance by AUROC (Fig 3.5), both had at least one ResNet-50 predictor with

0.3 or worse test set accuracy (Table S3.1)), and both had more than two Drop50

learners in the final ensemble for the trial. For challenging draws of training,
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validation, and test sets, Drop50 learners may slightly outperform ResNet-50

learners, though generalization accuracy may remain low due to the clustering

of the data in the draws and limited sample sizes.

ResNets (both ResNet-50 and Drop50 architectures) were trained on 10 mu-

tant and 10 non-mutant patients, so with data augmentation each ResNet was

trained on 21600 images total. For each training set, a validation set of 5 mutant

and 5 non-mutant patients was used and did not overlap with the training set,

so with data augmentation each ResNet was validated against 10800 images.

The test set for an ensemble consistent of 5 mutant and 5 non-mutant patients

which were not augmented and did not overlap with any training or validation

set for any classifier in the ensemble, so each ensemble was tested against 10

images.

There is remarkable variability in test accuracy among the testable models

from each Monte Carlo cross validation run (Table S3.1). If the test set is drawn

from approximately the same distribution as the validation set, where ResNet

validation accuracy is 0.6+ and ResNets are uncorrelated, then we can expect 6

of the 11 ResNets (6/11 < 0.6) in an ensemble to correctly predict SPOP mutation

state on average. In this way the ensemble is a strong learner based on ResNet

weak learners [68,69]. Through ensemble averaging, the mean SPOP mutation

probability is computed over all 11 constituent ResNets, to provide the final

probability from the ensemble.
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CHAPTER 4

CONNECTING PATHOLOGISTS THROUGH PATIENT CASE SEARCH

ON SOCIAL MEDIA AND PUBMED

Portions of this chapter first appeared in Schaumberg* et al 2020. Andrew

J. Schaumberg originally wrote Schaumberg et al 2020, which was extensively

edited by Mariam Aly. Thomas J. Fuchs and others reviewed Schaumberg

et al 2020, including Laura G. Pastrián, Bobbi S. Pritt, Mario Prieto Pozuelo,

Stephen Yip, Bin Xu, Aurélien Morini, Olaleke O. Folaranmi, Jerad M. Gard-

ner, Celina Stayerman, and S. Joseph Sirintrapun. Schaumberg et al 2020 was

a collaboration that additionally included Wendy C. Juarez-Nicanor, Sarah J.

Choudhury, Ricardo Sotillo Sánchez, Khanh Ho, Nusrat Zahra, Betul Duygu

Sener, Srinivas Rao Annavarapu, Karra A. Jones, Kathia Rosado-Orozco, San-

jay Mukhopadhyay, Carlos Miguel, Hongyu Yang, Rola H. Ali, Corina Rusu,

Celina Stayerman, John Gross, and Dauda E. Suleiman. The author makes

this chapter available under the terms of a Creative Commons Attribution-

NonCommercial-NoDerivatives [CC-BY-NC-ND] 4.0 International license, at

https://creativecommons.org/licenses/by-nc-nd/4.0/.

Early developments in the work documented in this chapter were presented

as an extended abstract [16]1 and won Best Poster at Pathology Visions 2019. This

*Schaumberg AJ, Juarez-Nicanor WC, Choudhury SJ, Pastrián LG, Pritt BS, Prieto-Pozuelo
M, Sotillo-Sánchez R, Ho K, Zahra N, Sener BD, Yip S, Xu B, Annavarapu SR, Morini A, Jones
KA, Rosado-Orozco K, Mukhopadhyay S, Miguel C, Yang H, Rosen Y, Ali RH, Folaranmi OO,
Gardner JM, Rusu C, Stayerman C, Gross J, Suleiman DE, Sirintrapun SJ, Aly M, and Fuchs TJ.
Interpretable multimodal deep learning for real-time pan-tissue pandisease pathology search
on social media. bioRxiv, page 396663, March 2020. doi:10.1101/396663. Publisher: Cold Spring
Harbor Laboratory Section

1Alternatively, this extended abstract is available at http://www.jpathinformatics.
org/downloadpdf.asp?issn=2153-3539;year=2020;volume=11;issue=1;spage=
1;epage=1;aulast=;type=2.
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work is currently in press at Modern Pathology2.

4.1 Introduction

The United Nations’ Sustainable Development Goal 3: Good Health and Well-

Being suggests that it is essential to “ensure healthy lives and promote well-

being for all at all ages” [2]. In the furtherance of this goal, it is suggested to

“[s]ubstantially increase [...] the recruitment, development, training, and re-

tention of the health workforce in developing countries” to universally achieve

“access to quality essential health care services” [2]. We therefore take connecting

pathologists worldwide to be important.

Indeed, Nix et al. [76] find pathologists in developing countries (e.g. India,

Brazil, and Pakistan) frequently use social media, and 220/1014 (22%) of the

posts they analyzed involved “asking for opinions on diagnosis”. The use of

social media by pathologists occurs worldwide for both challenging cases and

education [77,78,79]. This suggests social media can facilitate global collaborations

among pathologists for novel discoveries [80]. We expand on these approaches

by combining (i) real-time machine learning with (ii) expert pathologist opin-

ions via social media to facilitate (i) search for similar cases and (ii) pathological

diagnosis by sharing expertise on a particular disease, often with underserved

hospitals.

For machine learning to work in general practice, it must be trained on data

(i) of sufficient diversity to represent the true variability of what is observed

(ii) in a sufficiently realistic setting that may differ from tightly controlled exper-

2The online version of the Schaumberg* et al 2020 article in Modern Pathology is expected to
be available at https://doi.org/10.1038/s41379-020-0540-1.
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imental conditions [81]. We therefore (i) collaborate with pathologists worldwide

where we (ii) use for training the images that these pathologists share to obtain

opinions, which are often histopathology microscopy pictures from a smart-

phone. We did not observe many images from whole slide scanners, which at a

global scale have been adopted slowly, due in part to cost and complexities of

digital pathology workflows [82,83].

For machine learning to work accurately, it must be trained on a sufficiently

large dataset. Our first aim is therefore to curate a large dataset of pathology

images for training a machine learning classifier. This is important because in

other machine learning domains, e.g. natural vision tasks, datasets of millions

of images are often used to train and benchmark, e.g. ImageNet [51] or CIFAR-

10 [84]. Transfer learning allows limited repurposing of these classifiers for other

domains, e.g. pathology [11,85,86,87]. Indeed, we [5] are among many who start

in computational pathology [25] with deep-neural networks pre-trained on Ima-

geNet [88,89,90], and we do so here.

However, computational pathology datasets annotated for supervised learn-

ing are often much smaller than millions of images. For example, there are only

32 cases in the training data for a Medical Image Computing and Computer As-

sisted Intervention challenge (available at http://miccai.cloudapp.net/

competitions/82) for distinguishing brain cancer subtypes, and this in-

cludes both pathology and radiology images. Other studies are larger, such

as the TUmor Proliferation Assessment Challenge (TUPAC16) dataset of 821

cases [91] – all 821 cases being whole slide images from The Cancer Genome Atlas

(TCGA) (http://cancergenome.nih.gov/). TCGA has tens of thousands

of whole slide images available in total, but these images are only hematoxylin
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Figure 4.1: Graphical summary. Pathologists are recruited worldwide (A). If a pathol-
ogist consents to having their images used (B), we download those images (C) and
manually annotate them (D). Next, we train a Random Forest classifier to predict image
characteristics, e.g. disease state (E). This classifier is used to predict disease and search.
If a pathologist posts a case to social media and mentions @pathobot (F), our bot will
use the post’s text and images to find similar cases on social media and PubMed (G).
The bot then posts summaries and notifies pathologists with similar cases (H). Patholo-
gists discuss the results (I), and some also decide to share their cases with us, initiating
the cycle again (A). Procedure overview in the supplement explains further (Sec S4.5.4).

and eosin (H&E) stained slides, and do not represent non-neoplastic lesions

such as infections, which are clinically important to correctly diagnose [92]. The

main limitation is that obtaining annotations from a pathologist is difficult due

to outstanding clinical service obligations, which prevented our earlier efforts

from scaling up [67]. We overcome this limitation by curating a large and di-

verse dataset of 13,626 images from Twitter and 113,161 images from PubMed,

where text annotations came from social media post text, hashtags, article titles,
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abstracts, and/or figure captions.

Equipped with our large dataset, we then address our second main aim,

which is to utilize machine learning trained on this dataset to facilitate prospec-

tive disease state predictions and search from pathologists in real-time on so-

cial media. To that end, we capitalize on a common and systematic approach

to diagnosis in which a disease is in one of three classes [92]. Specifically, we

use machine learning on pathology images from social media and PubMed to

classify images into one of three disease states: nontumor (e.g. normal, artifact

(Fig S4.11), injury, infection, or nontumor), low grade (e.g. pre-neoplastic, be-

nign, or low grade malignant potential), or malignant.

We then implement a social media bot that in real time applies our machine

learning classifiers in response to pathologists on social media to (i) search for

similar cases, (ii) provide quantitative predictions of disease states, and (iii) en-

courage discussion (Fig 4.1). When this bot links to a similar case, the patholo-

gist who shared that case is notified. The ensuing discussions among patholo-

gists are more informative and context-specific than a computational prediction.

For instance, to make a diagnosis of Kaposi’s sarcoma, first-world countries

have access to an HHV8 histopathology stain, but a pathologist in a develop-

ing country may instead be advised to check patient history of HIV because the

HHV8 stain is prohibitively expensive. Obviously, a computational prediction

of cancer/non-cancer is far less helpful than what humans do: discuss.

In order for machine learning approaches to be useful in a clinical setting, it

is critical that these approaches be interpretable and undergo rigorous prospec-

tive testing [93]. Furthermore, these approaches need to be accompanied by

quantified measures of prediction uncertainty [94]. It may be argued whenever
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human life is at risk – (i) interpretability, (ii) uncertainty quantification, and

(iii) prospective testing are essential – whether the context is medicine or self-

driving cars [95,96]. Our social media bot and methods are the first in computa-

tional pathology to meet all of these criteria in that (i) we provide multiple levels

of interpretability (e.g. Random Forest feature importance and deep learning

activation heatmaps), (ii) we statistically quantify prediction uncertainty using

ensemble methods, and (iii) we prospectively test in full public view on social

media. Concretely, this means (i) a pathologist can interpret what concepts the

machine learning finds to be diagnostic in general or what parts of a particu-

lar image suggest a specific disease state, (ii) statistical significance, confidence

intervals, or boxplots of computational predictions are presented to a patholo-

gist for assessment (e.g. the boxplot in Fig 4.1 lower left), and (iii) in real time

a pathologist can interact with our social media bot and method to appraise

performance on a case-by-case basis, as well as evaluate the public history of

pathologist-bot interactions on social media.

4.2 Materials and methods

This study was approved by the Institutional Review Board at Memorial Sloan

Kettering Cancer Center.

4.2.1 Social media data

From Twitter we curate 13,626 images from 6,351 tweets from 25 pathologists

from 13 countries. We chose Twitter primarily for its brevity, i.e. one Tweet is
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Figure 4.2: Technique, tissue, and disease diversity. Panel set A shows diverse tech-
niques in our data. Initials indicate author owning image. (A1) R.S.S.: Papanicolaou stain.
(A2) L.G.P.: Periodic acid-Schiff (PAS) stain, glycogen in pink. (A3) L.G.P.: PAS stain, lower
magnification. (A4) L.G.P.: H&E stain c.f. Panel A3. (A5) L.G.P.: H&E stain, human appendix,
including parasite Enterobius vermicularis (c.f. Fig S4.12). (A6) L.G.P.: Higher magnification
E. vermicularis c.f. Panel A5. (A7) L.G.P.: Gömöri trichrome, collagen in green. (A8) L.G.P.:
Diff-quik stain, for cytology. (A9) R.S.S.: GMS stain (Intra-stain diversity in supplement details
variants, Sec S4.5.3), fungi black. (A10) M.P.P.: Giemsa stain. (A11) A.M.: Immunohistochem-
istry (IHC) stain, positive result. (A12) A.M.: IHC stain, negative result. (A13) R.S.S.: Congo
red, polarized light, plaques showing green birefringence. (A14) M.P.P.: Fluorescence in situ
hybridization (FISH) indicating breast cancer Her2 heterogeneity. (A15) S.Y.: Head computed
tomography (CT) scan. (A16) L.G.P.: Esophageal endoscopy.
In panel set B we show differing morphologies for all ten histopathological tissue types on
Twitter. (B1) C.S.: bone and soft tissue. We include cardiac here. (B2) K.H.: breast. (B3) R.S.S.:
dermatological. (B4) L.G.P.: gastrointestinal. (B5) O.O.F.: genitourinary. (B6) M.P.P.: gyneco-
logical. (B7) B.X.: otorhinolaryngological a.k.a. head and neck. We include ocular, oral, and
endocrine here. (B8) C.S.: hematological, e.g. lymph node. (B9) S.Y.: neurological. (B10) S.M.:
pulmonary.
In panel set C we show the three disease states we use: nontumor, low grade, and malignant.
(C1) M.P.P.: Nontumor disease, i.e. herpes esophagitis with Cowdry A inclusions. (C2) K.H.:
Nontumor disease, i.e. collagenous colitis showing thickened irregular subepithelial collagen
table with entrapped fibroblasts, vessels, and inflammatory cells. (C3) A.M.: Low grade, i.e.
pulmonary hamartoma showing entrapped clefts lined by respiratory epithelium. (C4) R.S.S.:
Low grade, i.e. leiomyoma showing nuclear palisading. We show IHC completeness but it is
not included for machine learning. (C5) B.D.S.: Malignant, i.e. breast cancer with apocrine dif-
ferentiation. (C6) L.G.P.: Malignant, i.e. relapsed gastric adenocarcinoma with diffuse growth
throughout the anastomosis and colon. Gross sections (e.g. Fig S4.13) shown for completeness
but not used.
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at most 280 characters, so we did not expect to need complicated text process-

ing logic to parse tissues or diagnoses. Written permission to download and

use the data was obtained from each collaborating pathologist. One pathologist

publicly declared their data free to use, so we use these data with acknowl-

edgement. One pathologist donated his glass slide library to another patholo-

gist, and the receiving pathologist shared some received cases on social media,

which we treat as belonging to the receiving pathologist. Images are annotated

with their tweet text and replies. We use these data for supervised learning.

4.2.2 PubMed data

To represent PubMed data, we download the PubMed Central “Open Access

Subset” of 1,074,484 articles. We first trained a classifier to distinguish H&E

images from all others on social media (Figs 4.2, S4.14, S4.15), then used the

classifier to identify PubMed articles that have at least one H&E figure. From

the identified 30,585 articles we retain 113,161 H&E images to comprise our

PubMed dataset. Images are annotated with figure caption, article abstract, and

article title. This expanded dataset may contain disease that is too rare to be

represented in social media data.

4.2.3 Image processing

We manually curate all social media images, separating pathology from non-

pathology images. Defining an acceptable pathology image (Sec S4.5.1) details this

distinction in the supplement (Fig S4.14). Some pathologists use our Integrated
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Pathology Annotator (IPA) tool to browse their data and manually curate the

annotations for their cases (Figs S4.16, S4.17). We retain non-pathology data

publicly posted by consenting pathologists that cannot be publicly distributed

to enable building a machine learning classifier that can reliably distinguish

pathology from non-pathology images.

4.2.4 Text processing

Text data overview (Sec S4.5.5) in the supplement discusses our text processing

to derive ground truth from social media posts (Fig S4.18). We use hashtags,

e.g. #dermpath and #cancer, as labels for supervised learning. We process the

text of the tweet and the replies, detecting terms that indicate tissue type or dis-

ease state. For instance, “ovarian” typically indicates gynecological pathology,

while “carcinoma in situ” typically indicates low grade disease (specifically, pre-

neoplastic disease in our low grade disease state category). Our text processing

algorithm (Fig S4.18) is the result of author consensus.

4.2.5 Random Forest classifier

We train a Random Forest of 1,000 trees as a baseline for all tasks. A white-

balanced image is scaled so its shortest dimension is 512 pixels (px). White

balancing helps correct images with reduced blue coloration due to low light-

ing (Fig S4.15D). The 512×512px center crop is then extracted, and 2,412 hand-

engineered image features are calculated for this crop (Figs 4.3, S4.19).
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Figure 4.3: Deep learning methods summary. (A) An overall input image may be
of any size, but must be at least 512×512 pixels (px). (B) We use a ResNet-50 [62] deep
convolutional neural network to learn to predict disease state (nontumor, low grade,
or malignant) on the basis of a small 224×224px patch. This small size is required to
fit the ResNet-50 and image batches in limited GPU memory. (C) For set learning, this
network transforms each of the 21 patches sampled evenly from the image in a grid to
a 100-dimensional vector. These 21 patches span the overall input image entirely. For
instance, if the overall input image is especially wide, the 21 patches will overlap less
in the X dimension. The ResNet-50 converts these 21 patches to 21 vectors. These 21
vectors are summed to represent the overall image, regardless of the original image’s
size, which may vary. To represent additional clinico-visual context of a patient case,
this sum vector is concatenated with tissue covariates (which may be missing for some
images), marker mention covariate, and hand-engineered features. A Random Forest
then learns to predict disease state on this concatenation that encodes (i) task-agnostic
hand-engineered features (Fig S4.19) near the image center, (ii) task-specific features
from deep learning throughout the image, (iii) whether IHC or other markers were
mentioned for this case, and (iv) optionally tissue type. Other machine learning tasks,
e.g. histology stain prediction and tissue type prediction, were simpler. For simpler
tasks, we used only the Random Forest and 2,412 hand-engineered features, without
deep learning.

4.2.6 Customized hybrid deep-learning-random-forest model

and clinical covariates

Image preprocessing and data augmentation For image preprocessing, a

white-balanced image is scaled to be 512 pixels in its shortest dimension, and

for deep learning, 224×224px patches are sampled to train a deep convolutional
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neural network. For deep learning, we use data augmentation of random ro-

tations, random flips, random zoom/rescaling, random brightness variations,

Gaussian noise, and Mixup [97]. This means that throughout training hundreds

of times over our data we make many small changes to the data each time, e.g.

to teach the neural network that rotating an image does not change the diagno-

sis. Deep learning (Sec S4.5.11) discusses further.

Deep learning and deep features To maximize performance by learning

disease-state-specific features, we additionally consider deep learning for the

most challenging task of disease state prediction. Our deep learning archi-

tecture is a ResNet-50 [62] (Fig 4.3B) pretrained on ImageNet, which we train

end-to-end without freezing layers (Fig S4.23). This means the ResNet-50 deep

convolutional neural network is initially trained to classify natural images, e.g.

cats and dogs, but every neuron may be adjusted in a data-driven manner for

histology-specific learning on our pathology Twitter dataset. To determine how

deep feature representations change before and after training the ResNet-50 on

histopathology images and covariates, we analyze both (i) ImageNet2048 features

from the ResNet-50 that has not been trained on histopathology data, and (ii) 100

deep features based on the same ResNet-50 where all neurons have been further

trained on histopathology data. We define ImageNet2048 features as the 2,048

outputs from the ResNet-50’s final Global Average Pooling layer, summed over

21 image patches in a grid fashion and concatenated with other features for Ran-

dom Forest learning (Fig 4.3C). For histopathology deep learning, we append a

100-neuron fully-connected layer atop the ResNet-50, connecting to the ResNet-

50 and covariates, and sum over the same 21 image patches in a grid fashion

(Fig 4.3B). Deep learning instance and set feature vectors (Sec S4.5.8) discusses this
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and the feature interpretability related to the Heaviside step function (Eqns 4.6,

4.8).

Clinical covariates To best predict disease state and find similar cases, we

seek to include as much patient-related context as possible in our computa-

tional pathology machine learning models, so we additionally include clinical

information, i.e. tissue type and marker mentions. To represent the tissue type

covariate, we include a ten-dimensional one-hot-encoded binary vector to en-

code which one of the ten possible tissue types is present for this case. If the

tissue type is unknown, tissue type is all zeroes for the neural network while

being missing values for the Random Forest. We also include a binary one-

dimensional marker mention covariate, which is 1 if any pathologist discussing

the case mentions a marker test, e.g. “IHC” or “desmin”.

4.2.7 Disease state classifier repurposed for similarity-based

search

After we train a Random Forest classifier (Sec 4.2.5) to predict/classify disease

state from a variety of deep and non-deep features (Fig 4.3C), we then use

this classifier’s Random Forest similarity metric for search [70,98]. Specifically,

our Random Forest consists of 1,000 Random Trees, each of which predicts dis-

ease state. If any given Random Tree makes an identical sequence of decisions

to classify two histopathology images (each with optionally associated clinical

covariates), the similarity of those two images is incremented by one. Aggregat-

ing across all Random Trees, the similarity of any two images can therefore be
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quantified as a number between 0 (not similar according to any Random Tree)

and 1,000 (similar according to all 1,000 Random Trees). Equipped with this

similarity metric, we repurpose the classifier for search: the classifier takes in a

search image and compares it to each other image using this similarity metric,

then provides a list of images ranked by similarity to the search image. This

approach provides the first pan-tissue (i.e. bone and soft tissue, breast, derma-

tological, gastrointestinal, genitourinary, gynecological, head and neck, hema-

tological, neurological, pulmonary, etc) pan-disease (i.e. nontumor, low grade,

and malignant) patient case search in pathology.

4.2.8 Three levels of sanity checking for search

To inform the physician and to avoid mistakes, sanity checks are important in

medicine, or wherever human life may be at risk. Quantifying uncertainty is

particularly important [94] in medicine, to assess how much trust to put in pre-

dictions that will affect the patient’s care. We are the first to offer three sanity

checks for each individual search: (i) prediction uncertainty, (ii) prediction as a

check for search, and (iii) prediction heatmaps. Machine learning sanity checking

for search discusses further (Sec S4.5.9). Briefly, “prediction uncertainty” relies on

an ensemble/collection of classifiers to assess if disease state prediction strength

is statistically significant, and if not, the prediction and search using this image

should not be trusted. Second, “prediction as a check for search” indicates that

if the disease state classification for a given image is assessed as incorrect by a

pathologist, search results using this image should not be trusted, because the

same classifier is used for both prediction and search. Third, we use “predic-

tion heatmaps” to show disease-state predictions for each subregion of a given
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image, based on deep learning. If a pathologist disagrees with these heatmaps,

deep-learning-based search for that image cannot be trusted. A failure of any

one of these three checks indicates that search results may be incorrect, and they

are flagged as such.

4.2.9 Five levels of method interpretability

Interpretability is critical in medicine [93] for physicians to understand whether

or not the machine learning is misinterpreting the data. For example, machine

learning may uncover that pneumonia patients with a history of asthma have

lower mortality risk, suggesting that asthma is protective against pneumonia

mortality. However, this would not make sense to a physician, who would

instead realize that such patients have lower mortality because they are more

likely to be admitted directly to an intensive care unit [99,100]. Asthma is not pro-

tective from pneumonia mortality, intensive care is.

Ideally, interpretability facilitates both deductive and inductive human rea-

soning about the machine learning findings. Deductively, interpretability al-

lows human reasoning about what machine learning finds in specific patient

cases, e.g. explaining the malignant prediction overall for a patient by spatially

localizing where malignancy-related features are in a histology image. Induc-

tively, interpretability allows human reasoning about broad principles that may

be inferred from the machine learning findings overall for a task, e.g. texture

features are important in disease state prediction. To the best of our knowl-

edge, it is novel to offer both deductive and inductive interpretability in a pan-

tissue pan-disease manner in computational pathology. We do this with (i)
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Figure 4.4: Random Forest feature importance for prioritizing deep features, when
non-deep, deep, and clinical features are used together for learning. We use the mean
decrease in accuracy to measure Random Forest feature importance. To do this, first,
a Random Forest is trained on task-agnostic hand-engineered features (e.g. color his-
tograms), task-specific deep features (i.e. from the ResNet-50), and the tissue type co-
variate that may be missing for some patients. Second, to measure the importance of
a feature, we randomly permute/shuffle the feature’s values, then report the Random
Forest’s decrease in accuracy. When shuffling a feature’s values this way, more impor-
tant features result in a greater decrease in accuracy, because accurate prediction relies
on these features more. We show the most important features at the top of these plots,
in decreasing order of importance, for deep features (at left) and non-deep features (at
right). The most important deep feature is “r50 46”, which is the output of neuron 47
of 100 (first neuron is 0, last is 99), in the 100-neuron layer we append to the ResNet-50
and train on histopathology images. Thus of all 100 deep features, r50 46 may be prior-
itized first for interpretation. Of non-deep features, the most important features include
Local Binary Patterns Pyramid (LBPP), color histograms, and “tissue” (the tissue type
covariate). LBPP and color histograms are visual features, while tissue type is a clinical
covariate. LBPP are pyramid-based grayscale texture features that are scale-invariant
and color-invariant. LBPP features may be important because we neither control the
magnification a pathologist uses for a pathology photo, nor do we control staining pro-
tocol. For a before-and-after-training comparison that may suggest the histopathology-
trained deep features represent edges, colors, and tissue type rather than texture, we
also analyze feature importance of only-natural-image-trained ImageNet2048 deep fea-
tures in conjunction with hand-engineered features (Fig S4.20). Marker mention and SIFT
features excluded from Random Forest feature importance analysis discusses other details in
the supplement (Sec S4.5.10).
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hand-engineered feature interpretability (Fig S4.19), (ii) Random Forest feature

importance (Fig 4.4), (iii) before-and-after-histopathology-training feature im-

portance comparison of deep features to hand-engineered features (Fig 4.4 vs

Fig S4.20), (iv) deep feature activation maps (Figs 4.5D, S4.21), and (v) cluster

analyses (Figs 4.6). Machine learning interpretability for search in the supplement

discusses further (Sec S4.5.10).

Histopathology-trained deep features represent edges, colors, and tissue To

understand what deep features learn to represent after training on histopathol-

ogy data, we compare Random Forest feature importances of (a) ImageNet2048

deep features [not trained on histopathology data] with hand-engineered

features and tissue covariate (Fig S4.20), to (b) 100 deep features [trained

on histopathology data] with hand-engineered features and tissue covariate

(Fig 4.4). Before the deep neural network is trained on histopathology data,

the tissue covariate as well as edge and color hand-engineered features are

important (Fig S4.20). However, after the deep neural network is trained on

histopathology data, tissue is less important while texture hand-engineered fea-

tures are more important (Fig 4.4). Therefore, we reason that the deep neural

network learns histopathology-relevant edge, color, and tissue features from

histopathology data (which reduces the importance of e.g. hand-engineered

edge and color features after learning), but the deep neural network may forget

histopathology-relevant texture features during learning (which increases the

importance of hand-engineered texture features after learning).

Interpretability uncovers spatial prediction-to-feature correspondences of

disease Considering both introspective/inductive interpretability (Fig 4.4)
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Figure 4.5: Interpretable spatial distribution of deep learning predictions and fea-
tures. (A) An example image for deep learning prediction interpretation, specifically
a pulmonary vein lined by enlarged hyperplastic cells, which we consider to be low
grade disease state. Case provided by Y.R. (B) The image is tiled into a 5×5 grid of
overlapping 224×224px image patches. For heatmaps, we use the same 5×5 grid as in
Fig 4.1C bottom left, imputing with the median of the four nearest neighbors for 4 of 25
grid tiles. (C) We show deep learning predictions for disease state of image patches.
(C1) throughout the image, predictions have a weak activation value of ˜0 for malig-
nant, so these patches are not predicted to be malignant. (C2) the centermost patches
have a strong activation value of ˜1, so these patches are predicted to be low grade. This
spatial localization highlights the hyperplastic cells as low grade. (C3) the remaining
normal tissue and background patches are predicted to be nontumor disease state. Due
to our use of softmax, we note that the sum of malignant, low grade, and nontumor
prediction activation values for a patch equals 1, like probabilities sum to 1, but our
predictions are not Gaussian-distributed probabilities. (D) We apply the same heatmap
approach to interpret our ResNet-50 deep features as well. (D1) the most important
deep feature corresponds to the the majority class prediction, i.e. C1, malignant. (D2)
the second most important deep feature corresponds to prediction of the second most
abundant class, i.e. C2, low grade. (D3) the third most important deep feature corre-
sponds to prediction of the third most abundant class, i.e. C3, nontumor. The fourth
(D4) and fifth (D5) most important features also correspond to nontumor. (D6) the sixth
most important deep feature does not have a clear correspondence when we interpret
the deep learning for this case and other cases (Fig S4.21), so we stop interpretation here.
As expected, we did not find ImageNet2048 features to be interpretable from heatmaps,
because these are not trained on histpathology (Fig S4.21A5).
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and demonstrative/deductive interpretability (Fig 4.5), we find a correspon-

dence between important deep features (Fig 4.4) and the spatial localization of

deep learning predictions of disease state (Fig 4.5). Moreover, we find that us-

ing (Eqn 4.14) the three most important interpretable deep features slightly but

significantly improve search performance (Table S4.1). Deep set learning feature

interpretation discusses further (Sec S4.5.11).

Deep features trained on histopathology logically cluster patients by dis-

ease state, whereas pathology-agnostic features do not Through cluster anal-

ysis we interpret which features (i.e. hand-engineered, only-natural-image-

trained, or histopathology-trained), if any, separate patients into meaningful

groups, and if the features “make sense” to describe patient histopathology.

As expected, neither hand-engineered features (Fig 4.6A1) nor only-natural-

image-trained ImageNet2048 deep features (Fig 4.6B1) cluster patient cases by

disease state, presumably because these features are not based on histopathol-

ogy. These approaches also do not cluster patients by contributing pathologist

(Fig 4.6A2,B2) or by tissue type (Fig 4.6A3,B3). Additionally, we do not find

that reducing dimensionality through principal components analysis qualita-

tively changes the clustering (Fig S4.22). In contrast, deep features trained on

histopathology data do cluster patients together by disease state (Fig 4.6C1),

but not by pathologist (Fig 4.6C2) or tissue (Fig 4.6C3). We conclude that these

deep features primarily reflect representations of disease state in a non-tissue-

specific manner. It is important to note that any clustering-based result must

be carefully scrutinized, because features may suffer from artifacts, e.g. which

pathologist shared the patient case. If taken to an extreme, learning to predict

disease state on the basis of pathologist-specific staining/lighting/camera ar-
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tifacts amounts to learning concepts such as, “if pathologist X typically shares

images of malignant cases, and a new image appears to be from pathologist X,

then this image probably shows malignancy”, which does not “make sense” as

a way to predict disease state. Although we did not observe robust clustering

by pathologist, even vague grouping by pathologist (Fig 4.6A2 at gray arrows)

highlights the importance of critically assessing results. Artifact learning risk is

one reason why we (i) rigorously test search through leave-one-pathologist-out

cross-validation, and (ii) provide sanity checks.

4.2.10 Experimental design and evaluation

We evaluate our classifiers using 10-fold cross-validation to estimate bounds

of accuracy and Area Under Receiver Operating Characteristic (AUROC) per-

formance metrics. Supplementary experimental design and evaluation explains

further (Sec S4.5.14). Because we intend for our methods to accurately find

similar cases for any pathologist worldwide, we rigorously test search using

leave-one-pathologist-out cross-validation and report precision@k. Leave-one-

pathologist-out cross-validation isolates pathologist cases from one another, so

a test set is independent from the corresponding training set. This isolates to

a test set pathologist-specific or institution-specific imaging artifacts that may

occur from microscopy, lighting, camera, or staining protocol. Thus our leave-

one- pathologist-out cross-validation measurements quantify our method’s re-

producibility, which is critical to measure in medical machine learning [81].
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Figure 4.6: Disease state clusters based on hand-engineered, natural-image-trained
deep features, or histopathology-trained deep features. To determine which features
meaningfully group patients together, we apply the UMAP [101] clustering algorithm on
a held-out set of 10% of our disease state data. Each dot represents an image from a
patient case. In general, two dots close together means these two images have similar
features. Columns indicate the features used for clustering: hand-engineered features
(at left column), only-image-trained ImageNet2048 deep features (at middle column), or
histopathology-trained deep features (at right column). Rows indicate how dots are col-
ored: by disease state (at top row), by contributing pathologist (at middle row), or by tissue
type (at bottom row). For hand-engineered features, regardless of whether patient cases
are labeled by disease state (A1), pathologist (A2), or tissue type (A3), there is no strong
clustering of like-labeled cases. Similarly, for only-natural-image-trained ImageNet2048
deep features, there is no obvious clustering by disease state (B1), pathologist (B2),
or tissue type (B3). However, for histopathology-trained deep features , patient cases
cluster by disease state (C1), with separation of malignant (at dotted arrow), low grade
(at dashed arrow), and nontumor (at solid arrow). There is no clear clustering by pathol-
ogist (C2) or tissue type (C3). The main text notes that hand-engineered features may
vaguely group by pathologist (A2, pathologists 2 and 16 at solid and dotted arrows).
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4.2.11 Social media bot for public prospective testing

We present the first pathology-specific social media bot, @pathobot, on Twitter.

This bot is a case similarity search tool that applies our methods. Pathologists

on Twitter mention the bot in a tweet containing an image. The bot uses our

Random Forest classifier to provide disease-state prediction for that image, and

search for similar results. Its prediction and search results, along with quantita-

tive assessments of prediction uncertainty, are provided to pathologists in real

time. In this way, the bot facilitates prospective tests, and encourages collabo-

ration: as pathologists use the bot, they provide us with complementary qual-

itative feedback and help us recruit additional collaborators. In this way, the

bot facilitates prospective tests, and encourages collaboration: as pathologists

publicly use the bot, they provide us with complementary qualitative feedback

and these interactions help us recruit additional collaborators.

4.2.12 Computational hardware

For machine learning, we use Weka version 3.8.1 [102] on a laptop with OpenJDK

Java version 1.8.0 131. For deep learning, we use Tensorflow version 1.0.0 with

Keras version 2.1.4 [103] on a supercomputing cluster having GPUs supporting

nVidia CUDA version 8.0 and cuDNN version 5.1. Supplemetary computational

hardware and software discusses further (Sec S4.5.15). In R, we perform feature

importance analyses with the randomForest package [104] and cluster analyses

with the umap package [105].
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4.3 Results
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Figure 4.7: H&E performance. Predicting if an image is acceptable H&E human tissue
or not (at left), or if image is H&E rather than IHC (at right). Ten replicates of ten-
fold cross-validation (10-fold) and leave-one-pathologist-out cross-validation (LOO)
had similarly strong performance. This suggests the classifier may generalize well to
other datasets. We use the “H&E vs others” classifier to find H&E images in PubMed.
Shown replicate AUROC for H&E vs others is 0.9735 for 10-fold (10 replicates of 10-fold
has mean±stdev of 0.9746±0.0043) and 0.9549 for LOO (10 reps 0.9547±0.0002), while
H&E vs IHC is 0.9967 for 10-fold (10 reps 0.9977±0.0017) and 0.9907 for LOO (10 reps
0.9954±0.0004). For this and other figures, we show the first replicate.

4.3.1 Identifying and filtering for H&E images

We ran increasingly difficult tests using increasingly sophisticated machine

learning methods. Our first question is the most basic, but arguably the most

important: can machine learning distinguish acceptable H&E-stained human

pathology images from all others (Figs 4.2A, S4.14, S4.15)? We show acceptable

H&E-stained human pathology images can be distinguished from other images

– e.g. natural scenes or different histochemistry stains (Fig 4.7 at left) with high

performance (AUROC 0.95). Because of the high performance of this classifier,

it can be used to partially automate one of our manual data curation tasks, e.g.
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identifying acceptable images on social media. More importantly, when con-

fronted with over one million PubMed articles, we apply this classifier to filter

out all the articles that do not have at least one H&E image. To our knowledge,

this is the first H&E image detector to filter PubMed articles. PubMed figures

increase our searchable dataset by over an order of magnitude, without any ad-

ditional manual curation effort. Only with a large dataset may we expect to

successfully search for rare diseases, and we currently have 126,787 searchable

images. This task also serves as a positive control.

4.3.2 Distinguishing common stain types

H&E and IHC stain types are the most common in our dataset and are com-

mon in practice. We therefore ask if machine learning can distinguish between

these stain types, which vary in coloration (Fig 4.2A). Indeed, the classifier per-

forms very well at this discrimination (AUROC 0.99, Fig 4.7 at right). Thus,

although IHC coloration can vary between red and brown, machine learning

can still successfully differentiate it from H&E. Intra-stain diversity explains fur-

ther (Sec S4.5.3). A well-performing classifier such as this can be useful with

large digital slide archives that contain a mixture of H&E and IHC slides that

lack explicit labels for staining information. Our classifier can automatically and

accurately distinguish these stains, so that downstream pipelines may process

each stain type in a distinct manner.
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Figure 4.8: 10-tissue type and 3-disease state prediction performance and counts.
(A) Classifier performance for predicting histopathology tissue type (10 types, 8331 im-
ages). (B) Classifier performance for predicting disease state (3 disease states; 6549
images). Overall AUROC is the weighted average of AUROC for each class, weighted
by the instance count in the class. Each panel (A and B) shows AUROC (with ten-
fold cross-validation) for the chosen classifier. Random Forest AUROC for tissue type
prediction is 0.8133 (AUROC for the ten replicates: mean±stdev of 0.8134±0.0007). AU-
ROC is 0.8085 for an ensemble of our deep-learning-random-forest hybrid classifiers for
disease state prediction (AUROC for the ten replicates: mean±stdev of 0.8035±0.0043).
(C1) Disease state counts per tissue type. The proportion of nontumor vs. low grade
vs. malignant disease states varies as a function of tissue type. For example, dermato-
logical tissue images on social media are most often low grade, but malignancy is most
common for genitourinary images. (C2) Disease state counts as a function of whether
a marker test (e.g. IHC, FISH) was mentioned (˜25% of cases) or not. IHC is the most
common marker discussed and is typically, but not necessarily, used to subtype malig-
nancies.

4.3.3 Distinguishing ten histopathology tissue types

We next ask if machine learning can distinguish the ten tissue types present in

our Twitter dataset (Fig 4.2B). Tissue hashtags and keywords discusses this further

(Sec S4.5.6). The tissue types were distinguishable (AUROC 0.81, Fig 4.8A) and,

as expected, this task was more difficult than stain-related tasks. Being able to

identify tissue types may help to detect contaminating tissue in a slide.
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Figure 4.9: Disease state prediction performance for machine learning methods. For deep
learning we use a ResNet-50. For shallow learning we use a Random Forest. We train a Random
Forest on deep features (and other features), to combine deep and shallow learning (Fig 4.3C
top). Error bars indicate standard error of the mean. Points indicate replicates. Gray lines in-
dicate means. Performance increases markedly when including tissue type covariate for learn-
ing (even though tissue type is missing for some patients), when using deep learning to inte-
grate information throughout entire image rather than only the center crop, and when using
an ensemble of classifiers. Performance exceeds AUROC of 0.8 (at right). We conclude method
xii (“HandEng+Hist+Tissue Ens”) is the best we tested for disease state prediction, because
no other method performs significantly better and no other simpler method performs simi-
larly. Methods are, from left to right, (i) Random Forest with 2412 hand-engineered features
alone for 512×512px scaled and cropped center patch, (ii) Random Forest with tissue covari-
ates, (iii) Random Forest with tissue and marker covariates, (iv) method iii additionally with
SIFTk5 features for Random Forest, (v) only-natural-image-trained ResNet-50 at same scale as
method i with center 224×224px center patch and prediction from a Random Forest trained on
2,048 features from the ResNet-50 (Fig 4.3) (vi) histopathology-trained ResNet-50 at same scale
as method i with center 224×224px center patch and prediction from top 3 neurons (Fig 4.3B
top), (vii) histopathology-trained ResNet-50 with Random Forest trained on 100 features from
224×224px center patch per method vi, (viii) histopathology-trained ResNet-50 features at 21
locations throughout image summed and Random Forest learning on this 100-dimensional
set representation with 2,412 hand-engineered features, (ix) method viii with tissue covariates
for histopathology-trained ResNet-50 and 2,412 hand-engineered features for Random Forest
learning (i.e. Fig 4.3C sans marker information), (x) method ix with an only-natural-image-
trained ResNet-50 instead of a histopathology-trained ResNet-50 for Random Forest learning,
(xi) method ix with both an only-natural-image-trained ResNet-50 and a histopathology-trained
ResNet-50 for Random Forest learning, (xii) method ix with an ensemble of three Random Forest
classifiers such that each classifier considers an independent histopathology-trained ResNet-50
feature vector in addition to 2,412 hand-engineered features and tissue covariate, (xiii) method
xii where each Random Forest classifier in ensemble additionally considers only-natural-image-
trained ResNet-50 features, (xiv) method xii where each Random Forest classifier in ensemble
additionally considers the marker mention covariate (i.e. this is an ensemble of three classifiers
where Fig 4.3C is one of the three classifiers), (xv) method xii where each Random Forest in
ensemble additionally considers SIFTk5 features for learning.
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4.3.4 Deep learning predicts disease state across many tissue

types

Pathologists routinely make decisions about whether a tissue shows evidence

of nontumoral disease, low grade disease, or malignant disease, while ignor-

ing spurious artifacts (Fig S4.11). We therefore ask whether machine learning

can perform well on this clinically important task. For this, we use our most

common stain type, H&E, including only those images that are single-panel

and deemed acceptable (Fig S4.14). We systematically test increasingly sophis-

ticated machine learning methods (Fig 4.9) with the goal of achieving the high-

est possible performance. The simplest baseline model we consider, a Random

Forest on the 2,412 hand-engineered features (Fig S4.19), achieves an AUROC

of 0.6843±0.0012 (mean±stdev, Fig 4.9). Conversely, an ensemble of our deep-

learning-random-forest hybrid classifiers achieves much higher performance,

with AUROC 0.80 (Fig 4.9). To our knowledge, this is the first classifier that

predicts the full spectrum of disease states, i.e. nontumor, low grade, and ma-

lignant (Figs 4.2, 4.8B, 4.9).

4.3.5 Texture and tissue are important clinico-visual features of

disease

We next determine which features are important to our machine learning classi-

fier for disease state prediction. To do this, we interpret the Random Forest fea-

ture importance to gain insight into the clinico-visual features that are predictive

of disease state. Our analyses suggest that texture (e.g. Local Binary Patterns)
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Figure 4.10: Case similarity search performance. We report search performance as
precision@k for leave-one-pathologist-out cross-validation for (A) tissue and (B) disease
state. We note search based on SIFT features performs better than chance, but worse
than all alternatives we tried. Marker mention information improves search slightly,
and we suspect cases that mention markers may be more relevant search results if a
query case also mentions markers. SIFTk5 and histopathology-trained Deep3 features
improve performance even less, but only-natural-image-trained ImageNet2048 deep fea-
tures increase performance substantially (Table S4.1). (C) We show per-pathologist vari-
ability in search, with outliers for both strong and weak performance. Random chance
performance is shown as a dashed gray line. In our testing, performance for every
pathologist is always above chance, which may suggest performance will be above
chance for patient cases from other pathologists. We suspect variability in staining pro-
tocol, variability in photography, and variability in per-pathologist shared case diagno-
sis difficulty may underlie this search performance variability. The pathologist where
precision@k=1 is lowest shared five images total for the disease prediction task, and
these images are of a rare tissue type. Table S4.2 shows per-pathologist performance
statistics.

and color (e.g. Color Histograms) features are most important for pathology

predictions and search, followed by the tissue type clinical covariate (Fig 4.4).

Marker mention and SIFT features excluded from Random Forest feature importance

analysis discusses further (Sec S4.5.10). Our method is therefore multimodal, in

that it learns from both visual information in the images and their associated

clinical covariates (e.g. tissue type and marker mention). Both modalities im-

prove search performance, as discussed in the following section.
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4.3.6 Disease state search, first pan-tissue pan-disease method

In light of pathology-agnostic approaches to pathology search [88,89], we ask if

pathology-specific approaches to pathology search may perform better. Indeed,

search is the main purpose of our social media bot. Moreover, others have noted

task-agnostic features may suffer from poorly understood biases, e.g. features to

distinguish major categories (e.g. cats and dogs) in natural images may system-

atically fail to distinguish major categories in medical images (e.g. ophthalmol-

ogy or pathology) [106]. To evaluate performance of search, we show precision@k

for k=1. . . 10 (Fig 4.10). As a positive control, we first test search for similar tis-

sues (Fig 4.10A), e.g. if the search query image is breast pathology then the top

search results should be breast pathology. Here, precision@k=1 = 0.6 means 60%

of the time the search query image and top search result image have matching

tissue types, e.g. both are breast, or both are gastrointestinal, etc. We subse-

quently test search for similar disease states (Fig 4.10B, Table S4.1), e.g. if the

search query image is malignant then the top search results should be malig-

nant. Here, precision@k=1 = 0.76 means 76% of the time the search query im-

age and top search result image have matching disease states (e.g. both malig-

nant, both nontumor, etc), while precision@k=8 = 0.57 means the search query

image matches 57% of the top 8 search results, i.e. 4-5 of the top 8 search re-

sults are malignant when the search query image is malignant. To estimate

performance in general for each method, we perform 10 replicates of leave-

one-pathologist-out cross-validation with different random seeds (i.e. 0,1,. . . ,9).

This allows variance to be estimated for Random Forest learning, but methods

based exclusively on the L1 norm are fully deterministic, so these have zero es-

timated variance (Table S4.1). We follow two-sample hypothesis testing, where

one set of 10 replicates is compared to a different set of 10 replicates. To cal-
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culate a U statistic and a p-value, we use the two-tailed Wilcoxon rank-sum

test on precision@k=1, which tests for significant differences in precision for

the first search result on average. For search’s statistical null model, we train

a Random Forest on images with randomly shuffled class labels and evaluate

precision@k, as a permutation test (i.e. “RandomForest(2412 + tissue), permu-

tation test” precision@k=1 = 0.3967±0.0044 in Table S4.1, shown in Fig 4.10B).

We conclude search performs significantly better than chance (0.7618±0.0018 vs

0.3967±0.0044, U = 100, p = 0.0001817) and offer specifics below.

Results for disease state search are detailed in supplementary disease state

search results (Sec S4.5.13). Here, we briefly describe four main findings. First,

clinical covariates improve search performance (Sec S4.5.13). Both tissue type

(0.5640±0.0024 vs 0.6533±0.0025, U = 100, p = 0.0001796) and marker men-

tion (0.6533±0.0025 vs 0.6908±0.0021, U = 100, p = 0.0001796) covariates signifi-

cantly improve search performance. This suggests that for search these clinical

features provide disease state information above and beyond the visual char-

acteristics we have of each image. Second, in the context of other features, nuclear

features of disease are better represented by the most prevalent SIFT clusters rather than

all SIFT (Sec S4.5.13), and the effect of SIFT clusters on search is small but sig-

nificant (0.6908±0.0021 vs 0.6935±0.0029, U = 19.5, p = 0.02308). This indicates

nuclear features, as represented by SIFT, provide limited but complementary

disease-related information for search. Third, deep features synergize with other

features, informing search more than nuclear SIFT features, but less than clinical covari-

ates (Sec S4.5.13). Specifically, deep features improve search performance less

than tissue type (0.5720±0.0036 vs 0.6533±0.0025, U = 0, p = 0.0001806) and less

than marker mentions (0.6602±0.0022 vs 0.6908±0.0021, U = 0, p = 0.0001817),

but more than SIFT clusters (0.6983±0.0016 vs 0.6948±0.0032, U = 83.5, p =

101



0.01251). Fourth, deep features trained only on natural images outperform hand-

engineered features for search, and offer best performance when combined with other fea-

tures (Sec S4.5.13). Particularly, in the context of clinical covariates, ImageNet2048

features demonstrate high importance by offering better search performance

than the 2,412 hand-engineered features, SIFTk5 features, and histopathology-

trained Deep3 features combined (0.7517±0.0025 vs 0.7006±0.0026, U = 100, p =

0.0001817) – although this may change as more data become available or more

advanced methods are used. Moreover, we found that adding only-natural-

image-trained ImageNet2048 deep features to our best-performing model (in-

corporating hand-engineered features, tissue type, marker mention, SIFTk5 fea-

tures, and Deep3 features) improved search performance further (0.7006±0.0026

vs 0.7618±0.0018, U = 0, p = 0.0001817), and was the best-performing search

method we measured. Taken together, we conclude (i) texture and tissue fea-

tures are important, (ii) histopathology-trained deep features are less important,

(iii) nuclear/SIFT features are least important for disease state search, and (iv)

in the context of clinical covariates the only-natural-image-trained ImageNet2048

deep features are the most important visual features we tested for search.

4.4 Discussion

4.4.1 Summary

Pathologists worldwide reach to social media for opinions, often sharing rare

or unusual cases, but replies may not be immediate, and browsing potentially

years of case history to find a similar case can be a time-consuming endeavor.
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Therefore, we implemented a social media bot that in real-time searches for sim-

ilar cases, links to these cases, and notifies pathologists who shared the cases,

to encourage discussion. To facilitate disease prediction and search, we main-

tain a large pathology-focused dataset of 126,787 images with associated text,

from pathologists and patients the world over. This is the first pan-tissue, pan-

disease dataset in pathology, which we will share with the community through

pathobotology.org to promote novel insights in computational pathology.

After performing stain- and tissue-related baselines with a Random Forest, we

performed a number of analyses on this dataset for disease state prediction and

search. To accomplish this, we developed a novel synthesis of a deep convolu-

tional neural network for image set representations and a Random Forest learn-

ing from these representations (Figs 4.3, S4.24). We found this model can classify

disease state with high accuracy, and be repurposed for real-time search of sim-

ilar disease states on social media. This interpretable model, combined with its

social media interface, facilitates diagnoses and decisions about next steps in

patient care by connecting pathologists all over the world, searching for similar

cases, and generating predictions about disease states in shared images. Our

approach also allowed us to make a number of important methodological ad-

vances and discoveries. For example, we found that both image texture and

tissue are important clinico-visual features of disease state – motivating the in-

clusion of both of feature types in multimodal methods such as ours. In contrast,

we find deep features trained only on natural images (e.g. cats and dogs) sub-

stantially improve search performance, while pathology-specific deep features

and cell nuclei features improve less, although combining all these performed

best. Finally, we provide important technical advances, because our novel deep

feature regularization and activation functions yield approximately binary fea-
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tures and set representations that may be applicable to other domains. In sum,

these advances readily translate to patient care by taking advantage of cutting-

edge machine learning approaches, large and diverse datasets, and interactions

with pathologists worldwide.

4.4.2 Comparison with prior studies

Our approach builds on, but greatly extends, prior work in the field of compu-

tational pathology. We comment on this briefly here, and describe more fully

in supplementary comparison with prior studies (Sec S4.5.16). First, much of prior

work involves a subset of tissue types or disease states [107,108,109]. However, our

study encompasses diverse examples of each. Second, prior studies investigat-

ing pathology search take a variety of pathology-agnostic approaches, e.g. (i)

using neural networks that were not trained with pathology data [88,89] or (ii) us-

ing scale-invariant feature transform (SIFT) features [89,110,111] that do not repre-

sent texture or color [112]. Our inclusive approach is different, building a search

method for pathology data represented by thousands of features – including

SIFT clusters, neural networks, other visual features, and clinical covariates.

Our model outperforms pathology-agnostic baselines.

Prior work has found texture and/or color to be important for tissue-related

tasks in computational pathology [113,114,115]. We find texture and color to be im-

portant for disease-related tasks. Additionally, we go a step further by compre-

hensively considering the relative contributions of many clinico-visual features

to the prediction and search of disease. Such important features include texture,

color, tissue type, marker mentions, deep features, and SIFT clusters.
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4.4.3 Caveats and future directions

Below we discuss the primary caveats (also see supplementary caveats in

Sec S4.5.17) and future directions (also see supplementary future directions in

Sec S4.5.18).

Diagnosis disagreement or inaccuracy First, there is a risk of error in our data

because many different pathologists share cases, and they may disagree on the

most appropriate hashtags or diagnosis. Moreover, there may be diagnostic

inaccuracies from the pathologist who posted the case, or other pathologists.

We find these situations to be rare, but if they occur, the case tends to have an

increased amount of discussion, so we can identify these situations. Second,

our nontumor/low-grade/malignant keyword rules may be incorrect or vague.

For these first and second caveats, we take a majority vote approach, manu-

ally curate as needed, and discuss. Indeed, as we discussed amongst ourselves

the hyperplasia in Fig 4.5, it became clear we needed to explicitly mention pre-

neoplastic disease is included in the low grade disease state category.

Dataset case sampling and region of interest biases Our dataset may have

both (i) a case sampling bias and (ii) a region of interest sampling bias. First,

there may be case sampling bias if we typically have unusual cases that patholo-

gists consider worth sharing, and our cases by necessity only come from pathol-

ogists on social media. We plan to advocate sharing of normal tissue and less

unusual cases to circumvent this bias. Second, the pathologist who shares the

case chooses which images to share, typically sharing images of regions of in-

terest that best illustrate the diagnosis, while ignoring other slides where the

105



diagnosis is less straightforward. In future work, we will include whole slide

images for additional context.

Dataset size and granularity To increase the granularity and accuracy of tis-

sue type predictions, we first plan to expand the size of this dataset by recruit-

ing more pathologists via social media, aiming to have representative images

for each organ. There are many organs within the gastrointestinal tissue type,

for instance. Additionally, we expect our dataset to broaden, including more

social media networks and public pathology resources such as TCGA, with our

bot integrating these data for search and predictions.

Conclusion

We believe this is the first use of social media data for pathology case search

and the first pathology study prospectively tested in full public view on social

media. Combining machine learning for search with responsive pathologists

worldwide on social media, we expect our project to cultivate a more connected

world of physicians and improve patient care worldwide. We invite patholo-

gists and data scientists alike to collaborate with us to help this nascent project

grow.
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S4.5 Supporting information

S4.5.1 Image data overview

The goal of obtaining images from practicing pathologists worldwide is to cre-

ate a dataset with a diverse and realistic distribution of cases. A worldwide

distribution (Fig 4.1A) may be appropriate to overcome potential biases inher-

ent at any single institution, such as stain chemistries or protocols. Our dataset

includes a wide variety of stains and techniques (Fig 4.2A) – even variety for

a single stain, e.g. H&E stains (Fig S4.15). H&E stain composition may vary

by country – e.g. in France, H&E typically includes saffron, which stains col-

lagen fibers. Phyloxin may be used instead of eosin. This helps differentiate

between connective tissue and muscle, or to see cell cytoplasm better against a

fibrous background. This stain may be referred to as “HES” or “HPS”, and we

consider it H&E. Intra-stain diversity discusses further (Sec S4.5.3). Our dataset

includes gross sections (Fig S4.13) that pathologists share alongside images of

stained slides. In addition to variation in the signal of interest (i.e., stain, tissue,

or disease), we find variability in the noise (i.e. pathology artifacts, Fig S4.11).

Such noise may initially seem undesirable, but is likely important for machine

learning techniques to robustly predict which image motifs are relatively unim-

portant rather than prognostic. Finally, our dataset includes a variety of par-

asites and other [micro]organisms (Fig S4.12, and Fig S4.15A,E), an important

consideration in developing countries.
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Figure S4.11: Artifact and foreign body images. Our dataset includes artifacts and
foreign bodies which machine learning should not consider prognostic. All panels hu-
man H&E. (A) B.X.: Colloid. (B) L.G.P.: Barium. (C) L.G.P.: Oxidized regenerated
cellulose, a.k.a. gauze, granuloma may mimic mass lesion [116]. (D) R.S.S.: Hemostatic
gelatin sponge, a.k.a. SpongostanTM, may mimic necrosis. (E) S.Y.: Sutures, may mimic
granuloma or adipocytes. (F) L.G.P.: Crystallized kayexelate, may mimic mass lesion or
parasite.

A B C D E F G

Figure S4.12: Parasitology images. Our dataset includes diverse parasitology sam-
ples. (A) B.S.P.: Strongyloides stercoralis, light microscopy. (B) B.S.P.: Dirofilaria immi-
tis, in human, H&E stain. (C) B.S.P.: Plasmodium falciparum, in human, Giemsa stain.
(D) B.S.P.: Incidental finding of unspecified mite in human stool, light microscopy. (E)
B.S.P.: Dermatobia hominis, live gross specimen. (F) B.S.P.: Acanthamoeba, in human, H&E
of corrective contact lenses. (G) B.S.P.: Trichuris trichiura, gross specimen.

Defining an acceptable pathology image

To create our pathology social media database, we first identified pathology im-

ages, and second, narrowed down the set of pathology images into those that

were of sufficient quality to be used and could be shared publicly. By “pathol-

ogy image”, we mean images that a pathologist may see in clinical practice, e.g.

gross sections, microscopy images, endoscopy images, or X-rays. An image des-

ignated as a “pathology image” is not necessarily an image of diseased tissue.

After we identified pathology images, we screened them for inclusion in our

dataset. “Acceptable images” are those that do not meet rejection or discard cri-

teria defined below. If an acceptable image is personally identifiable or private

110



C D E FA B

Figure S4.13: Gross images. Gross sections are represented in our dataset, putting the
slide images in context. (A) M.P.P: Urothelial carcinoma. (B) M.P.P.: Lung adenocarci-
noma. (C) S.R.A.: Barth syndrome. (D) N.Z.: Enlarged spleen. (E) S.R.A.: Arteriove-
nous malformation. (F) L.G.P.: Kidney adrenal heterotopia.
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Figure S4.14: Image acceptability criteria. Examples of images that are rejected, be-
cause they are not pathology images that a pathologist would see in clinical practice.
(A) top M.P.P., bottom B.D.S: “art” rejects. (B) top B.S.P., bottom S.Y.: “non-pathology”
rejects. (C) top B.X., bottom A.M.: “overdrawn” rejects. (D) top S.R.A., bottom L.G.P.:
“panel” is rejected for some tasks, e.g. H&E vs IHC or disease state prediction, but
not for others, e.g. H&E vs others. The H&E vs others task retains multi-panel im-
ages because multi-panel images that include an H&E panel should be included in our
PubMed search results, and this classifier is used to filter PubMed. (E) top and bottom
S.R.A.: top is acceptable H&E (see Sec S4.5.1 for definition), bottom is “dup” [duplicate]
rejection.

(see criteria below), we retain the image for some machine learning analyses,

but do not distribute the image publicly [for legal reasons].

Criteria for rejected, discarded, private, or acceptable images For our man-

ual data curation process, we defined several rejection criteria (Fig S4.14), de-

tailed in Section S4.5.2. Figure S4.14A shows examples of images rejected as

“art”, because they are artistically manipulated H&E pathology microscopy im-

ages. Figure S4.14B shows examples of images rejected as “non-pathology”,
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Figure S4.15: H&E images. Our dataset includes diverse H&E-stained slide mi-
croscopy images. (A) S.R.A.: Acute villitis due to septic Escherichia coli. (B) R.S.S.:
Garlic. (C) R.S.S.: “Accellular” leiomyoma after ulipristal acetate treatment. (D) R.S.S.:
Brownish appearance from dark lighting. (E) K.R.O.: Sarcina in duodenum. (F) B.D.S.:
Mature teratoma of ovary, pigmented epithelium. (G) K.A.J.: Central core myopathy.

e.g. parasitology-inspired cupcakes (top) and a natural scene image (bottom).

Non-pathology images are relatively common on pathologists’ social media ac-

counts, though we try to minimize their frequency by recruiting pathologists

who primarily use their accounts for sharing and discussing pathology. Fig-

ure S4.14C shows examples of images rejected as “overdrawn”. Overdrawn im-

ages are those that have hand-drawn marks from a pathologist (which pathol-

ogists refer to as “annotations”), which prevent us from placing a sufficiently

large bounding box around regions of interest while still excluding the hand-

drawn marks. Section S4.5.2 discusses our “overdrawn” criterion in detail. Fig-

ure S4.14D shows examples of images rejected as “panel”, because they con-

sist of small panels (top) or have small insets (bottom); splitting multi-panel im-

ages into their constituent single-panel images would substantially increase our

manual curation burden. Figure S4.14E top is an acceptable H&E-stained pathol-

ogy image. Figure S4.14E bottom is rejected as a duplicate of the S4.14E top im-

age, though the colors have been slightly modified, and the original image is a

different size.
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S4.5.2 Supplementary Image processing

Criteria details for rejected, discarded, private, or acceptable images

Though criteria are outlined in criteria for rejected, discarded, or acceptable images

(Sec S4.5.1) – more formally, we reject the following image types, during our

manual data curation process:

1. Non-pathology images, such as pictures of vacations or food.

2. Multi-panel images, such as a set of 4 images in a 2×2 grid. Images with

insets are also rejected. For “H&E vs IHC”, “tissue type”, and “disease

state” tasks, we only accept single-panel images, and leave for future work

the complexities of splitting multi-panel images into sets of single-panel

images. We accept multi-panel images for the “H&E vs others” task, be-

cause we use the classifier trained for this task to filter PubMed, and many

H&E images in PubMed are multi-panel, which are useful as search re-

sults. Multi-panel images may have black dividers, white dividers, no

dividers, square insets in a corner, or floating circular insets somewhere in

the image. There may be two or more panels/insets. Per-pixel labels for

each panel may be the best solution here, and would support a machine

learning approach to split multi-panel images to reduce this additional

manual data curation burden.

3. Overdrawn images, where a 256×256px region could not bound all re-

gions of interest in an image. This occurs most frequently if a pathologist

draws by hand a tight circle around a region of interest, preventing im-

age analysis on the region of interest in a way that completely avoids the

hand-drawn marks.

113



4. Images that manipulate pathology slides into artistic motifs, such as smi-

ley faces or trees. In contrast, a picture of a painting would be a non-

pathology image.

Moreover, we completely discard from analysis certain types of images:

1. Duplicate images, according to identical SHA1 checksums or by a pre-

ponderance of similar pixels. However, duplicate images may be shown

in search results, if the images are contained in different tweets, because

there may be different replies to these tweets as well.

2. Corrupt images, which either could not be completely downloaded or em-

ployed unusual JPEG compression schemes that Java’s ImageIO3 library

could not open for reading.

3. Pathology images that are owned by pathologists who have not given us

explicit written permission to use their images. Consider the following ex-

ample. When a pathlogist gives us permission to download data, our soft-

ware bot downloads thousands of that pathologists’s social media posts

regardless if some of the images in those posts are actually owned by a dif-

ferent pathologist who did not give us permission. We detect these cases

when we manually curate the pathologist’s data, and discard these images

belonging to pathologists who have not given us permission. To elaborate,

pathology images that are taken by pathologists and shared on social me-

dia are treated the same way as pathology images taken from case reports

or copyrighted manuscripts, i.e. if the pathologist or publisher has not

provided us explicit written permission to use the image, we discard the

pathology image and do not use it.
3ImageIO documentation available here: https://docs.oracle.com/javase/7/

docs/api/javax/imageio/ImageIO.html
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Images that are not rejected or discarded are deemed “acceptable” pathology

images. However, for legal reasons, we cannot distribute all of the images we

have from social media, namely:

1. Pathology images obtained from children (including fetuses), which may

be identifiable. The data shared on social media are anonymized; thus,

we do not have contact information for the child’s parent and therefore

cannot obtain consent to distribute a picture of e.g. a child’s X-rays or

gross specimens. Although unlikely to be identified by the parent if these

images were made public, we prefer to err on the side of caution. How-

ever, microscopy slide images are not personally identifiable, so we may

distribute these.

2. Personally identifiable pictures involving adults, because they have the

right to consent or not to their likeness being distributed. We consider

faces, body profiles, automobile license plates, etc to all be personally iden-

tifiable pictures involving adults, especially because these data may be

cross-referenced against timestamp, location, clinician, institution, medi-

cal condition, other people in the picture, etc.

3. Copyrighted content, which includes images of copyrighted manuscripts,

pictures of slideshow presentations, and pictures of any brand or logo. A

lab picture that includes boxes bearing logos would be a non-pathology

image that we cannot distribute, because we do not have permission to

distribute any images with the protected logos. A picture of a powerpoint

slide at a conference that shows some text outlining a new way to make

a clinical decision would also be a non-pathology image that we hold pri-

vately and do not distribute. We similarly hold privately an image of text

taken from a non-open-access manuscript because it may not be possible
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to identify the original source to provide a proper citation, and even if we

could, this poses an additional data curation burden that we would rather

avoid. Moreover, we prefer to err on the side of caution and not distribute

these images, rather than rely on “fair use” or similar law that may expose

us to legal challenges and costs4. By retaining these images privately, we

can train a machine learning classifier to detect these types of images and

potentially reduce our manual data curation burden.

Overdrawn rejection criterion

Here we discuss the details of rejecting images as “overdrawn”. Figure S4.14C

top is rejected as “overdrawn”, because the regions of interest (ROIs) in the

H&E image that the pathologist refers to in the social media post’s text have

hand-drawn circles and arrows such that it is not possible to place a 256×256px

square over all ROIs without including these circle and arrow marks. We

chose 256×256px because deep convolutional neural networks in computational

pathology [11] typically require 227×227px (i.e. AlexNet [50] or CaffeNet [49]) or

224×224px (i.e. ResNet [62]) images, and we have used these sizes in the past [67,5].

We note the Inception [117] family of deep convolutional neural networks takes a

299×299px image input, which is larger than 256×256px and is also frequently

used in computational pathology [11]. Ideally, each image would have ROIs and

hand-drawn arrows/circles annotated at the pixel level, so each image could be

annotated as “overdrawn” to arbitrary bounding box sizes, whether 256×256px

or 299×299px, and we leave this to future work. Smaller “overdrawn” bounding

4Courts in the United States have ruled that images posted to social media are still owned
by their authors and are not public domain. Indeed, in Morel v. AFP, AFP was ordered to pay
Morel $1.2 million for copyright infringement because AFP used images that Morel posted to
social media.
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boxes may allow more images to pass as acceptable, rather than be rejected. A

256×256px image size allows minor rotations and crops for deep learning data

augmentation using 224×224px input image sizes. Minor upsampling and/or

image reflection at the image’s outer boundaries may allow a 256×256px im-

age to work for 299×299px input image sizes. Figure S4.14C bottom is rejected

as “overdrawn”, because this image was originally 783×720px and the arrow

marks prevent us from capturing each of the two indicated regions of interest

in their own 256×256px square.

Uniform cropping and scaling of original images

Images shared on social media may be any rectangular shape. However, ma-

chine learning methods typically require all images be the same size. To accom-

modate this, we use the following procedure:

1. Take the minimum of two numbers: the original image’s height and width.

2. Crop from the center of the original image a square with a side whose

length is the minimum from the prior step.

3. Scale this square to 512×512px.

This square is intended to be large enough to represent small details, such as

arrows and circles drawn one pixel wide by the pathologist. Such arrows and

circles may then be used to predict if an image is “overdrawn” or not. Ideally,

the tweet’s text would be available alongside the image to give the machine

learning the fullest information possible about potential ROIs in the image, for

“overdrawn” prediction, but for simplicity here we perform only image-based

machine learning.
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The motivation for the 256×256px “overdrawn” criterion detailed in

Sec S4.5.2 is that there may be an attention layer that scans the original image

for 256×256px squares that have no marks from the pathologist. Such marks in-

clude circles or arrows for ROI indication, or the pathologist’s name to indicate

copyright/ownership. Such mark-free 256×256px images may then be used for

machine learning on only patient pathology pixels.

S4.5.3 Data diversity discussion

Intra-stain diversity

There is an art and variability in histochemical stains that we have not discussed

in the main text, but for completeness mention here. We note that in clini-

cal practice we have observed high variability stains, for instance H&E stains

that appear almost neon pink, to GMS stains (discussed below) that had silver

(black) deposition throughout the slide. One reason for this is that there are a

number of reagents that may be used for staining, each with different qualities

that can make the stain darker, brighter, pinker, bluer, etc.

IHC stains typically use an antibody conjugated to a brown stain, namely

3,3’-Diaminobenzidine (DAB). The blue counterstain is typically hematoxylin.

However, some laboratories conjugate the antibody to a red stain instead. A

small minority of our IHC images are this red variant, which should not be

confused with H&E.

There is counterstain variability in Grocotts modification of the Gömöri

methenamine silver stain [GMS stain]. Typically the counterstain is green, but a
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pink counterstain is also available. We may see the pink variant as we acquire

more data. Currently we see only green.

Intra-tissue-type diversity

The tissue type hashtags we use are very broad, e.g. #gipath encompasses sev-

eral organs, such as stomach, small intestine, large intestine, liver, gallbladder,

and pancreas. We note, for instance, liver morphology looks nothing like the

stomach. Moreover, gynecological pathology, i.e. #gynpath, includes vulva

(which looks just like skin, i.e. dermatological pathology, #dermpath), vagina,

cervix, uterus, fallopian tubes and ovaries. Again, vulva looks nothing like

uterus. A number of tissue features also overlap, such as adipocytes in breast

tissue and adipocytes in the subcutaneous fat layer in skin. The amount and dis-

tribution of adipocytes typically differs between these tissues however. How-

ever, a lipoma in any tissue has a great deal of adipocytes and should not strictly

be confused with breast tissue. For all these motivating reasons, we have a fu-

ture direction to sample every organ within a tissue type hashtag category, for

all tissue type hashtag categories.

S4.5.4 Procedure overview

Consent, data acquisition, curation, and review

We follow the procedure outlined in Fig 4.1, and we first obtain data in steps

A-D. In step A, we find pathologists on social media (Twitter) who share many

pathology cases, or share infrequently shares tissues, e.g. neuropathology. In
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step B, we contact the pathologist via social media and ask for permission to use

their cases. In step C, we download the consenting pathologist’s cases shared

on social media. In step D, we manually annotate these posted cases for accept-

ability, e.g. if overdrawn, corrupt, duplicate, multi-panel, art, or non-pathology

rejecting per Fig S4.14. Defining an acceptable pathology image is explained in fur-

ther sections. We additionally annotate technique (Fig 4.2A), species (Figs S4.12,

S4.15A,B,E), and private status (e.g. personally identifiable pictures of adults or

pictures of children). Image data overview (Sec S4.5.1) and criteria for rejected, dis-

carded, private, or acceptable images (Sec S4.5.1) explain further, e.g. our definition

of “overdrawn” or what is [not] pathology. Moreover, if the nontumor/low-

grade/malignant status in a tweet is not clear, we read the Twitter discussion

thread for this case and manually annotate the case appropriately if possible.

Step D also involves clarifying cases that we have trouble annotating, e.g. if

it is not clear what stain was used for the image. We first ask the pathologist

who posted this case to social media. If we do not obtain an answer from that

pathologist, we (i) ask a pathologist at our local institution (i.e. author S.J.S.)

for an opinion or (ii) ask pathologist coauthors would have shared cases with

us. Pathologist validation of tissue and disease labels is an important part of

step D, and we use two tools for this. The first tool is the Interactive Pathol-

ogy Annotator (IPA) (Figs S4.16, S4.17), which pathologists may run on their

desktop to browse their case annotations. The second tool is our social media

bot “pathobot” (Fig 4.1), which interacts with collaborating pathologists, then

publicly posts results of search and disease state predictions. Pathobot search

results may indicate annotation issues, e.g. if a bone and soft tissue pathology

search returns a breast pathology result, we may check if the breast result was

mistakenly labeled as bone and soft tissue. Though we sometimes manually
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Figure S4.16: Interactive Pathology Annotator tool and social media dialogue. At left:
Pathologist (author S.R.A.) discusses a case. Without mentioning the diagnosis himself,
he confirms the diagnosis suggested by a second pathologist, i.e. cystadenofibroma,
which we explicitly annotate. At right: Our Interactive Pathology Annotator (IPA) tool
displays an image from this case, in the context of the tweet overall. IPA is a portal
for pathologists to (i) browse tweets and images in the dataset; (ii) validate our data
annotations; (iii) check our tissue type categorization algorithm results, (iv) check our
nontumor, low grade, and malignant categorization algorithm results; (v) search tweets
for specific keywords or diagnoses; (vi) filter out all cases except those from a specific
pathologist; and (vii) click the link to the original tweet on Twitter for context.

annotate some cases, most cases are annotated in a crowd sourced fashion. We

use social media post hashtags and a pathologist-reviewed rule-based text pro-

cessing algorithm to determine tissue type and disease state (Fig S4.18).

Interactive Pathology Annotator discussion For completeness, we show an-

other example of the use of our Interactive Pathology Annotator (IPA) tool

(Fig S4.17), which some pathologists have used to check that tissue and dis-

ease state annotations were correct. This is a case of metastatic disease, from

breast to gastrointestinal tissue, showing a diffuse pattern of lobular carcinoma

that is more common in breast.
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Figure S4.17: Interactive Pathology Annotator tool and tissue type hashtags. At left:
Pathologist (author K.H.) discusses case. Without mentioning the diagnosis himself,
he confirms diagnoses suggested by other pathologists, i.e. lobular breast carcinoma
metastasized to ileum, which we explicitly annotate. At right: IPA shows that our tissue
type categorization algorithm categorizes this tweet as breast pathology rather than
gastrointestinal. The primary tumor is in breast. We define the tissue classification task
this way to have applications for tumor site of origin prediction.

Machine learning, search, checks, and social media bot

Our procedure (Fig 4.1) continues with data analysis in steps E-G. In step E,

we use machine learning to train a classifier for a supervised learning task. For

example, a task may be to predict the disease state evident in a H&E image:

malignant, benign / low grade malignant potential [low grade], or nontumoral

pathology. This is a three-class classification task. Our baseline classifier is a

Random Forest, [70] which we compare to deep learning. We reuse the classifier

to compute a similarity metric for search. In step F, a pathologist posts to so-

cial media three key pieces of information together: (i) pathology images, (ii)

text descriptions, and (iii) the text “@pathobot”. Our social media bot is trig-

gered when mentioned this way, with parts (i) and (ii) forming the pathology

search query. In step G, our bot first searches its social media database of cases,
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then searches its larger PubMed database. A search result will be ranked highly

when the query and result tissue types match, when more clinical keywords are

shared between the query and result, and when the images are similar. Addi-

tionally, the bot will use an ensemble of classifiers to compute with uncertainties

the probability of each disease state in each image. This prediction is a sanity

check for search, i.e. if the prediction is uncertain or inaccurate, then the search

results may be suspect.

Social media interactions, search, notifications, recruitment

One cycle of our procedure (Fig 4.1) culminates with concluding social media in-

teractions in steps H and I, before ultimately repeating at step A. The social me-

dia bot posts its social media search results, PubMed search results, and disease

state prediction results. The social media search results include links to similar

cases posted to social media. The social media platform may notify patholo-

gists that their posted case has been linked. These pathologists may discuss the

putatively similar case. Our bot leverages text information from the patholo-

gist’s search post and reply posts. In this way our bot’s search is informed by

any diagnosis in the differential from any replying pathologist. When multiple

pathologists mention the same clinical or diagnostic keywords, those keywords

are weighted more highly for search. In effect, search is a collective endeavor

by all pathologists in the community discussing the case. The same search re-

peated over time may be more informed when more pathologist discussion has

accumulated over that time. We find that integrating our bot into social media

discussions sometimes inspires pathologists to contact us, share with us, and

collaborate with us. We then return to step A, and we collect more data for
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search and classifier training.

S4.5.5 Text data overview

For supervised learning, we use regular expressions to detect keywords in a

tweet’s text, to determine labels for the tweet’s images. The text and included

hashtags may indicate tissue type or disease state.

Tissue type categories from text

Prior work has discussed pathology-related hashtags as a way to make pathol-

ogy more accessible on social media [118]. Pathologists use hashtags to indi-

cate histopathology tissue types, such as “#gynpath” to indicate gynecological

pathology (Fig 4.2B). Sometimes alternative spellings are used, such as “#gin-

path”. Abbreviations are also common, e.g. “#breastpath” and “#brstpath” all

mean the same thing: breast pathology (Fig S4.17). A pathology hashtag ontol-

ogy is available at https://www.symplur.com/healthcare-hashtags/

ontology/pathology/. Because a tweet can have more than one hashtag,

we took the first tissue type hashtag to be the “primary” tissue type of the

tweet, and ignored the others. Section S4.5.6 discusses a special case. As de-

tailed in Section S4.5.6, we used hashtags and keywords for all tweets in a mes-

sage thread to identify the ten tissue types on Twitter, finding 233 bone and soft

tissue tweets, 155 breast tweets, 415 dermatological tweets, 794 gastrointestinal

tweets, 239 genitourinary tweets, 218 gynecological tweets, 308 head and neck

tweets, 115 hematological tweets, and 559 pulmonary tweets.
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Tweet text including hashtags Process Tweet hashtags

#crohn, #pathbug, or
#neurodegeneration ?

#ANYcancer or
#metastasis ?

Process Tweet text

Tumor/-oma in Tweet,
low grade/malignant likely,

nontumor unlikely

Phyllodes, grade, tumor,
or -oma (not Schistosoma)?Conflicting diagnoses?

Tweet is nontumorTweet is low gradeTweet is malignant Tweet is skipped

Was tumor/-oma detected?

yes 

no #ANYtumor or
#ANYoma ?

yes/no
regardless

no 

yes 

Carcinoma, blastoma, sarcoma,
met, anaplasia, myeloma, HL, CLL,
NSCC, MTSCC, RCC, BCC, etc?

-oma in situ, or
chondroblastoma?

yes/no 
regardless 

yes 

Congenital, cholecystitis, hydatid cyst,
chorangiomatosis, diverticulosis,

mycobacterial spindle cell pseudotumor,
intravenous leiomyomatosis, etc?

no 

yes 

no 

yes 

no 

yes 

Benign, cyst, polyp, angioma, wart,
hamartoma, leiomyoma, HPV, EBV, GIST,
DCIS, LCIS, hydatidiform mole, carcinoid,
dys-/hyper-/meta-/neo-plasia, adenoma, etc?

no 

yes 

Normal, ulcer, injury, infarct, infect, tauopathy,
endometriosis, HSV, CMV, GVHD, Crohn, etc?

no 

yes 

no 

yes #ANYpath, cerebellum, or nodule?

no 

yes no 

yes
yes

Figure S4.18: 3-disease text processing algorithm flowchart. Flowchart of algorithm that processes a single
tweet’s text to categorize it as nontumor (309 images), benign/low grade malignant potential [low grade] (347 images),
or malignant (385 images). A tweet may be skipped (132 images, i.e. 11.3% of images) when the pathologist discusses
multiple possible diagnoses for this case or when no pathology keywords are found. Dashed line indicates early steps
where tumor/-oma detected, and a later step where detected tumor/-oma considered for possible low grade catego-
rization. Nontumor, low grade, and malignant are defined in Sec S4.5.7. Flowchart steps are detailed in Sec S4.5.7. The
algorithm has many steps in order to parse overlapping words that have different diagnoses. For instance, if “Lobular
carcinoma in situ of the breast” (which is a low grade disease) was the tweet text, the algorithm has an early step to
categorize ”carcinoma in situ” as low grade (which is correct here) because a later step categorizes “carcinoma” as ma-
lignant (which is not correct here). Indeed, tweet text “Carcinoma of the breast” describes a malignant disease and the
algorithm categorizes it malignant because “in situ” is absent. Besides “carcinoma in situ” (low grade) and “carcinoma”
(malignant), the algorithm distinguishes “chorangiomatosis” (nontumor) from “angioma” (low grade), “hydatidiform
mole” (low grade) from “hydatid cyst” (nontumor) from “ovarian cyst” (low grade) from “cholecystitis” (nontumor),
and “intravenous leiomyomatosis” (nontumor) from “leiomyoma” (low grade).
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Nontumor, low grade, and malignant categories from text

We define three broad disease state categories (Figs 4.2C, S4.18) to use as la-

bels for supervised learning. Our “nontumor” category of 589 tweets includes

normal tissue, artifacts, injuries, and nontumoral diseases, e.g. Crohn’s disease,

herpes simplex infection, and myocardial infarction. Our “malignant” category

of 1079 tweets includes all malignant disease, including carcinoma, blastoma,

sarcoma, lymphoma, and metastases. Our definition of malignancy in epithelial

cancers is the ability to breach the basement membrane, i.e. a malignant tumor

escapes containment and is therefore no longer treatable with surgical resection.

Our “pre-neoplastic/benign/low grade malignant potential” [low grade] cate-

gory of 919 tweets is then all tumors or pre-cancer/neoplastic lesions that are

not yet invasive/malignant, e.g. hamartomas, carcinoid tumors, adenomas, and

carcinoma in situ. Details in Section S4.5.7. For the nontumoral vs low grade

vs malignant task, text processing was more complicated than the tissue type

task (Sec S4.5.6) because (i) of a heavy reliance on diagnosis keyword matching

(flowchart in Fig S4.18), and (ii) additional per-tweet and per-image annotations

to clarify nontumor/low-grade/malignant state, which may involve feedback

from a pathologist. Details in Section S4.5.7.

S4.5.6 Supplementary Text processing

Hashtag special case

A hashtag special case is “#bstpath”, bone and soft tissue pathology, which we

include in our breast pathology category only when the social media post’s text
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also includes the word “breast” or other breast-related keywords. Such key-

words are listed further below in this subsection. Examples of such tweets are

“Pleomorphic lobular carcinoma of the breast: Beautiful cells but nasty tumour #pathol-

ogy #pathologists #BSTPath” and “Now at my desk, W(47y-o) breast nodule...Could

be it siliconoma?? But it isn’t noted giant cells #pathology #pathologists #BSTpath”.

Tissue hashtags and keywords

We found a large number of pathology-related hashtags. We grouped al-

ternative spellings, e.g. #ginpath is #gynpath, #brstpath is #breastpath, and

#headandneckpath is #entpath. We also grouped less common hashtags with

more common hashtags, e.g. #cardiacpath is #bstpath (bone and soft tissue).

Some groupings were broad, e.g. #headandneckpath, #thyroid, #salivary, #oral-

path, #endocrine, #endopath, #oralpath, #eyepath, and #ocularpath are all #ent-

path.

To expand the per-tissue tweet counts, we moved beyond the hashtags and

next searched for keywords in the tweet using Perl regular expressions. Further,

if a tweet’s tissue type could not be determined by hashtags and keywords, we

assigned the tissue type of any other tweet in the message thread of tweets. For

example, if a tweet of unknown tissue type were a reply to a tweet of known

genitourinary type, then we considered both tweets to be genitourinary.
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S4.5.7 Nontumoral, Low grade, and Malignant task details

Tasks involving distinguishing nontumoral disease, low grade tumors, and ma-

lignant tumors (Fig 4.2C) are our most difficult tasks. The acknowledged defi-

nition of “malignant” in epithelial cancers is the ability to breach the basement

membrane, i.e. a malignant tumor escapes containment and is therefore no

longer “treatable with surgical resection”. A malignant tumor can invade into

the adjacent tissue, lymphatics, and blood vessels. For machine learning, we

define a three categories of disease: (a) normal tissue and nontumoral disease;

(b) benign, low grade, and oncovirus-driven tumoral disease; and (c) malignant

tumors – but there are number of caveats with this, because:

1. there is a spectrum of pathology rather than an oversimplified 3-class

nontumoral/low-grade/malignant system.

2. the benign/malignant dichotomy may be more vague in certain tissues

e.g. central nervous system (CNS) primary tumors such as chordomas.

3. vague terms like adenoma are typically benign but may be malignant, and

likewise vague terms like anaplasia are more often associated with malig-

nancy but not always.

4. vague terms like anaplasia and neoplasia make no real reference to the ma-

lignancy of lesions i.e. there are benign anaplastic lesions, while neoplasia

is almost synonymous with tumor.

5. terms like tumor do not provide information about benign or malignant

state, though normal/nontumoral can be ruled out.

6. there may be some disagreement if some terms, e.g. “carcinoma in situ”,

are more appropriate to include as low grade, or if instead should be con-
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sidered malignant due to their malignant potential or treatment implica-

tions. For instance, ductal carcinoma in situ (DCIS) typically needs to be

removed with surgery or radiotherapy, whereas lobular carcinoma in situ

(LCIS) typically does not. DCIS’s lower grade counterpart, atypical ductal

hyperplasia, may get surgery or not. We believe treatment implications

are a separate task. Typically, tweets do not include a decision to perform

surgery or not, so additional annotations may be needed for the surgery

task. We assign all pre-cancer and tumoral disease with malignant po-

tential to the “low grade” category, in light of these benign/malignant

ambiguities and data limitations.

7. the diagnosis should be known before deciding benign/malignant, but it

is very difficult to know the full diagnosis from the brief, generic, descrip-

tive terms in the tweet.

Text processing for Nontumoral, Low grade, and Malignant tasks

To determine if an acceptable H&E human microscopy image is nontumoral,

low grade, or malignant, we use regular expressions (Fig S4.18) as we did for

tissue type classification. However, keywords differed and we considered all

tweets in a message thread per Sec S4.5.5. To infer these message threads of

tweets, we downloaded from Twitter each tweet’s metadata (in JavaScript Ob-

ject Notation (JSON) format), which describes the parent tweet for each tweet.

If tweet A is a reply to tweet B, then tweet A is the parent of tweet B, and both

tweets are in the same message thread.

Our heirarchical algorithm for nontumor/low-grade/malignant keyword-

matching shown in Fig S4.18, and details for each step follow. First, to determine
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if a single tweet indicated nontumoral, low grade, or malignant, we looked for

specific hashtags in a tweet’s text that indicated malignancy, tumoral status, or

nontumoral status. For illustartion, what follows is a subset of our rules, with

commentary.

1. Malignant: /#[a-z]*cancer/i or /#metastas[ei]s/i

• The first regular expression in this set matches #ANYcancer, where

ANY can be any non-whitespace characters, e.g. “#bladdercancer”

and “#breastcancer” both match, as well as “#cancer”.

• Metastasis is a sign of malignant cancer, so tweets with #metastasis

or #metastases hashtags are malignant.

• If any matching keyword is detected, no further keyword processing

is performed. The tweet is malignant.

2. Nontumoral: /#crohn/i or /#neurodegeneration/i or /#pathbug/i

• Crohn’s disease and neurodegeneration are not tumoral diseases, so

this tweet is in the nontumoral/normal category. This /#crohn/

i regular expression is case-insensitive, so it matches “#crohn”,

“#Crohn”, and “#CROHN”. The #pathbug hashtag indicates a para-

site or other microorganism is in the image, which is also nontumoral.

• If any matching keyword is detected, no further keyword processing

is performed. The tweet is nontumoral.

3. Tumoral status (ambiguously low grade or malignant): /#[a-z]*tumou?r/i

or /#[a-z]*oma/i

• The first regular expression in this set matches #ANYtumor or #ANY-

tumour, where ANY can be any non-whitespace characters, e.g.
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“#BrainTumor” and “#phyllodestumour” both match, as well as

“#tumor”.

• The second regular expression matches #ANYoma, e.g. #Lymphoma

and #leiomyoma both match.

• Because “tumor” and “-oma” do not necessarily mean a tumor is low

grade or malignant, further keyword matching is performed. It is

unlikely that the tweet is nontumoral. If no other specific information

is found after all further keyword matching is performed, the tumor

is presumed to be low grade.

Second, if no hashtags matched, we then analyzed keywords in the tweet

text.

1. Skip: /mistake/i or /misinterpret/i or /confuse/i or /suspect/i

or /worry/i or /surprise/i or /mimic/i or /simulate/i or

/lesson/i or /\bhelp\b/i or /usually/i or /difficult/i or

/pathart/i or /pathchallenge/i or /pathquiz/i or /pathgame/i

or /ˆhttp/

• We skip tweets where (i) the pathologist discusses points of the case

which may be easily mistaken – instead of providing a single diagno-

sis, (ii) the pathologist provides a diagnosis but may suspect an alter-

native diagnosis, or (iii) the tweet is simply a link to another tweet.

No further keyword matching is performed for this tweet.

2. Tumoral status (ambiguously low grade or malignant):

/phyllod/i or /\bgrade\b/i or /tumou?r/i or (/[a-z]{3,}oma\b/i

and not /schistost?oma/i)
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• Phyllodes tumors, mentions of “tumor” or “tumour”, mentions of

tumor “grade”, and mentions of words that end in “oma” but are not

“Schistosoma” – are all detected here.

• Loosely speaking, phyllodes tumors are only slightly more likely to

be low grade than malignant. Because “tumor”, “-oma”, and “grade”

do not necessarily mean a tumor is low grade or malignant, further

keyword matching is performed. It is unlikely that the tweet is non-

tumoral. If no other specific information is found after all further

keyword matching is performed, the tumor is presumed to be low

grade.

• Schistosoma (and its misspelling “Schistostoma”) refers to a genus

of parasitic worm, rather than a tumor, though Schistosoma ends in

“oma” like many tumor types.

3. Low grade: /oma in situ/i or /chondroblastoma/i

• If we did not skip this tweet, but the tweet does mention “oma in

situ’’, e.g. “carcinoma in situ” or “melanoma in situ”, then we con-

sider this tweet and images to represent low grade disease. Carci-

noma in situ is pre-cancer, and we consider it more low grade than

malignant. If a tweet contains only “carcinoma” but not “in situ”,

subsequent steps will consider the tweet as malignant.

• If the tweet includes “chondroblastoma”, this tweet is low grade.

This is not to be confused with other blastomas, such as glioblastoma

or lymphoblastoma, which are malignant and matched in subsequent

steps.

• No further keyword matching is performed if these patterns match.

The tweet is low grade.
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4. Malignant: /malignant/i or /malignancy/i or /cancer/i or

/\bCA\b/i or /carc?inoma/i or /sarcoma/i or /blastoma/i or

/\bWilms/i or /GBM/i or /anaplas(?:ia|tic)/i or

/metastas[ie]s/i or /metastatic/i or /\bmets?\b/i or

/adenoca/i or /melanoma/i or /seminoma/i or /lymphoma/i or

/leuka?emia/i or /mesothelioma/i or /myeloma/i or /hodgkin/i

or /\bHL\b/i or /burkitt/i or /plasmoc[yi]toma/i or (/paget/i

and /breast/i) or /\bCLL\b/i or /PCNSL/i or /NSCHL/i or

/\bCHL\b/i or /NSCC/i or /\bI[LD]C\b/i or /\bASPS\b/i or

/mtscc/i or /sq?cc/i or /rcc/i or /bcc/i

• Many diagnoses and abbreviations may indicate cancerous malig-

nancy, e.g. carcinoma, sarcoma, Wilms’ tumor, leukemia, RCC [renal

cell carcinoma], NSCC [non-small cell lung carcinoma], or the stand-

alone abbreviation “CA” [cancer].

• We consider “anaplastic/anaplasia” to be more malignant than low

grade disease.

• No further keyword matching is performed if these patterns match.

The tweet is malignant.

5. Nontumoral: /congenital/i or /cholecystitis/i or

/chorangiomatosis/i or

/mycobacteri(?:um|al)\s*spindle\s*cell\s*pse?udotumor/i

or /intravenous\s*leiomyomatosis/i or /helicobacter/i or

/dirofilaria/i or /tuberculo/i or /enterobius/i or

/echinococcus/i or /hydatid\s*cyst/i or /giardia/i or

/cryptosporidium/i or /ascaris/i or /sarcina/i or /worm/i or

/spiroquet(?:osis|es)/i or /diverticulosis/i or /villitis/i
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or /colitis/i or /gastritis/i or /esophagitis/i or

/appendicitis/i or or /xanthoma/i

• Many diagnoses and abbreviations may indicate nontumoral disease,

e.g. congenital conditions, Helicobacter infection, and villitis. Non-

tumoral disease keywords that contain “cyst”, e.g. “cholecystitis”

and “hydatid cyst”, are detected here, because subsequent keyword

matching steps will detect “cyst” as a sign of low grade tumoral dis-

ease.

• If one of these nontumoral keywords matches, no further keyword

matches are attempted, and the tweet is considered nontumoral, even

if prior steps detected “tumor” or “-oma”. For instance, a “xan-

thoma” is a lipid aggregate, not a tumoral disease, even though xan-

thoma ends in -oma.

6. Low grade: /benign/i or /cyst/i or /polyp/i or /hamartoma/i

or /chorangioma/i or /ha?ematoma/i or /cylindroma/i or

/fibroma/i or /luteoma/i or /c[yi]toma/i or /cond[yi]loma/i

or /neoplas(?:ia|tic|m)/i or /LCIS/i or /DCIS/i or /\b[LD]IN\b/i

or /lipoma/i or /carcinoid/i or /neuroma/i or /meningioma/i

or /perineurioma/i or /cavernoma/i or /\bLGG\b/i or /\bODG\b/i

or /oligodendroglioma/i or /craniopharyngioma/i or

/le[yi]om[iy]oma/i or /schwannoma/i or /osteochondroma/i

or /ependymoma/i or /angioma/i or /syringoma/i or /acanthoma/i

or /collagenoma/i or /hidradenoma/i or /papilloma/i or

/pilomatrixoma/i or /hydatidiform\s*mole/i or /wart/i or

/molluscum/i or /\bHPV\b/i or /\bEBV\b/i or /kerat?osis/i

or /fibrokeratoma/i or /melanoc[iy]tosis/i or /brenner/i
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or /granular\s+cell\s+tumou?r/i or /metaplas(?:ia|tic)/i

or /dysplas(?:ia|tic)/i or /dysembryoplas(?:ia|tic)/i or

/hyperplas(?:ia|tic)/i or /\bLFH\b/i or /\bDNE?T\b/i or

/\bNET\b/i or /\bPTC\b/i or /\bGIST\b/i or /\bSTIC\b/i or

/\b[LD]ISN\b/i or /adenoma/i or /adenosis/i

• Many diagnoses may indicate benign tumor, e.g. hamartoma, fi-

broma, condyloma, papilloma, lipoma, adenoma, adenosis, or cyst.

• We consider “neoplastic/neoplasia”, “metaplastic/metaplasia”, “hy-

perplastic/hyperplasia”, and “dysplastic/dysplasia” to be more in-

dicative of benign/low-grade/non-invasive/pre-malignant disease

than malignant disease, but these terms are vague.

• We broadly consider oncovirus-driven tumors and wart-like growths

to be in this low grade category also, e.g. HPV [human papilloma

virus] warts and Molluscum contagiosum “water warts”.

• We similarly consider abbreviations “LCIS” [lobular carcinoma in

situ], “DCIS” [ductal carcinoma in situ], “LISN” [lobular in situ neo-

plasia], and “DISN” [ductal in situ neoplasia] to be more benign than

malignant disease, so we categorize them as low grade. Though DCIS

may require surgical or radiological intervention to be removed while

LCIS may not, we consider our “low grade” and “malignant” cate-

gories to be defined by the apparent histopathology rather than the

appropriate medical intervention. Predicting appropriate medical in-

tervention would be a different machine learning task.

• If one of these keywords match, the tweet is considered low grade

and no further keyword matching is performed.

7. Nontumoral: /normal/i or /ulcer/i or /embolism/i or /thromb/i
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or /rupture/i or /infarct/i or /aneurysm/i or /ha?emorrhag/i

or /injur(?:y|ed)/i or /inflam/i or /swell/i or

/balloon\s*cell\s*na?ev(?:us|i)/i or /decidua/i or

/foreign/i or /lymphadenopath?y/i or /vasculopathy/i or

/vasculitis/i or /synovitis/i or

/pulmonary\s*interstitial\s*glycogenosis/i or

/essential\s*thrombocythemia/i or /endometriosis/i or

/mastoc[iy]tosis/i or /castleman/i or /herpe(?:s|tic)/i or

/\bHSV\b/i or /\bCMV\b/i or /cytomegalovir/i or /viral/i or

/bacteri(?:a|um)/i or /fung(?:al|us)/i or /mycetoma/i or

/myco(?:sis|tic)/i or /infect(?:ion|ed)/i or /tauopathy/i

or /amyloidosis/i or /neurodegen/i or /\brabies\b/i or

/hemosiderosis/i or /polymicrogyria/i or

/status\s*verrucosus/i or /\bIUGR\b/i or

/storage\s*dis(?:ease|order)/i or /athero(?:sis|ma)/i or

/atherosclero(?:sis|tic)/i or /gauzoma/i or /colchicine/i

or /\bIBD\b/i or /GVHD/i or /crohn/i

• Many diagnoses may indicate normal tissue of nontumoral disease,

e.g. normal, embolism, decidua, tauopathy, foreign body, mycetoma,

CMV [cytomegaolovirus] infection, GVHD [graft versus host dis-

ease], and Crohn’s disease.

• If one of these nontumoral keywords matches, no further keyword

matches are attempted, and the tweet is considered nontumoral, even

if prior steps detected “tumor” or “-oma”. For instance, a mycetoma

is not a tumor, even though mycetoma ends with -oma.

8. Nontumoral: (not tumor/oma) and (/#[a-z]*path/i or

136



/cerebell(?:um|ar)/i or /nodul(?:e|arity)/i). Low grade if

tumor/oma.

• If the tweet does not have tumor or “-oma” keywords detected from

prior steps, and if the tweet has a #ANYpath hashtag (e.g. “#pulm-

path” or “#pathology”), mention of “nodule”/“nodularity”, or men-

tion of the cerebellum, then we consider the tweet to be nontumoral.

If instead the tweet has tumor or -oma keywords, then we consider

the tweet to be low grade. The tweet is skipped if no steps identified

the tweet as nontumoral, low grade, or malignant.

• Cerebellum is mentioned in several tweets, e.g. to depict normal cere-

bellar tissue5. Currently, we group normal tissue with tissue hav-

ing nontumoral disease. We expect more tissue-based keywords may

be used here in the future, as we expand our study to include more

pathologists, tissues, and normal cases.

• In practice, we manually inspect all tweet message text to minimize

the number of cases that are classified as nontumoral here. We typi-

cally write regular expressions to match specific keywords that indi-

cate if a tweet represents nontumoral, low grade, or malignant dis-

ease.

• As part of our manual data curation, if on Twitter there was dis-

cussion among pathologists, and a different pathologist mentioned

a correct diagnosis, and our consenting contributing pathologist con-

curred, then we write an auxiliary annotation file for the tweet with

a summarized diagnosis6. This summary is also used for pattern

5Normal cerebellum case by S.Y. at https://twitter.com/Sty_md/status/
821840894634565632

6A case of this is from author K.H., where a different pathologist gave the diagnosis, and he
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matching. This is an additional way that we minimize how many

cases are handled at this late step.

• Moreover, if the contributing pathologist wrote diagnostic text di-

rectly in the image, we will write this text in the auxiliary annotation

file for text matching also.7

• The way this “default nontumoral or low grade” rule is intended to

be used is as a catch-all for unusual but non-malignant conditions8.

Our motivation for this rule is to minimize our manual data curation

burden. We do not wish to write an auxiliary annotation file or make

a new regular expression for each unusual type of case, and we ob-

serve many of these cases are not malignant. It remains important to

inspect the cases manually for correctness.

Tweets that do not match any nontumoral, low grade, or malignant rules are

skipped in the same manner that Tweets matching skip rules are skipped. An

additional caveat is this keyword matching may need refinement as we accu-

mulate data.

S4.5.8 Image features for machine learning

To perform baseline machine learning analyses on the images from social me-

dia, we derive a feature representation for each image, as follows. We crop each

agreed. We summarized this as “metastatic lobular carcinoma” in the auxiliary annotation file
for the tweet https://twitter.com/Ho_Khanh_MD/status/999989201734197250.

7A case of this is from author M.P.P., where M.P.P. wrote “IDC DIN LISN” directly
on a shared histology image in the tweet https://twitter.com/dr_MPrieto/status/
890118713155997696 so we wrote this text in the auxiliary annotation file for the tweet.

8A case of this is from K.H., observing iron pill lesions in stomach biopsy https://
twitter.com/Ho_Khanh_MD/status/963800933716123648.
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Figure S4.19: Machine learning features. We use a variety of color, texture, and
edge features for baseline machine learning analyses. Some features, such as color his-
tograms, detect only color. Other features, such as Color Correlograms, detect both
colors and textures. Pyramid features are scale-invariant. We separately consider SIFT
features, which detect edges in a scale-invariant, rotation-invariant, and color-invariant
manner, localized at interest points in an image.

image to the center square and resize it to 512×512 pixels [px]. See Sec S4.5.2

for more discussion of the 512×512px image size and how it relates to the

256×256px image size for the “overdrawn” criterion. This 512×512px image

is then converted to a feature vector of 2,412 dimensions. The features we

use (Fig S4.19) are available in Apache LiRE [119]. These features, and their di-

mension counts, are as follows: CEDD (144) [120], Color Correlogram (256) [121],

Color Histogram (64) [119], FCTH (192) [122], Gabor (60) [119], Local Binary Patterns

(256) [123], Local Binary Patterns Pyramid (756) [124], PHOG (630) [125], Rotation In-

variant Local Binary Patterns (36) [126], and Tamura (18) [127].

Deep learning instance and set feature vectors

After training, our appended 100-neuron layer (Fig 4.3B) is a 100-dimensional

disease feature representation for a 224×224px patch. Due to our custom ac-
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tivation function and regularization (Fig S4.23), these 100 features are approx-

imately binary (Fig S4.24C). A vector sum of these 100-dimensional approxi-

mately binary feature vectors is a 100-dimensional feature counter vector, which

we relate to set cardinality (Eqn 4.8). Inspired by Deep Sets [128] and contin-

uous bag-of-words [129] methods, we sample 21 patches throughout the white-

balanced image, then add the 21 100-dimensional feature vectors to derive a

100-dimensional set representation for the white-balanced image (Fig 4.3C). In

the set representation, if a feature’s value is 21, then all 21 image patches have

this feature. An approximate intuition follows that if the value is 20, then 1 of

the 21 patches does not have this feature. This set-based approach offers lim-

ited interpretability and facilitates learning on large pathology images on social

media, despite the receptive field of a deep neural network being much smaller

(1 million pixels versus 224×224px, respectively). We train a Random Forest on

the concatenation of (i) this 100-dimensional set representation, (ii) our 2,412-

dimensional hand-engineered feature vector, (iii) the 10-dimensional tissue type

covariate vector, and (iv) the 1-dimensional marker mention covariate vector

(Fig 4.3C). Like Deep Sets, we use deep learning for instance learning, and add

instance representations for a set representation. However, our approach differs

from Deep Sets in that (i) we use a Random Forest to learn on set representa-

tions and side information (which is not differentiable end-to-end), (ii) we add

approximately binary Centered Soft Clipping (Fig S4.23) features in the range

(0,1) to implement counter-like set representations rather than add ReLU fea-

tures in the range [0,∞) which do not necessarily count instance features, and

(iii) we use Random Forest feature importance to interpret the relative influence

of deep features, hand-engineered features, and optional covariates on predic-

tion/classification (Fig 4.4).
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S4.5.9 Machine learning sanity checking for search

Prediction uncertainty quantified with ensemble

For disease state predictions posted to social media by the bot, we use an en-

semble of classifiers to quantify prediction uncertainty. This ensemble consists

of the set of classifiers for leave-one-pathologist-out precision@k search testing,

so the ensemble size is equal to the number of pathologists who contributed

data. Leaving one pathologist out from each classifier’s training ensures some

variability between classifiers. One classifier makes one prediction per image.

We use a Z-test to determine if a disease state prediction’s mean is significantly

above chance. If no prediction is above chance, then the predictions may be due

to chance alone and ignored by a pathologist. Likewise, search results may be

ignored. This is our first prospective sanity check, and only requires a statistical

interpretation of predictions.

Training data detection with ensemble This leave-one-out ensemble provides

an additional non-prospective sanity check – if only one classifier in the ensem-

ble makes a prediction that is strongly different from all the other classifiers in

the ensemble, it is possible that the bot was requested to make a prediction on

a case that was in the training data. This one “outlier” classifier that makes the

strongly different prediction is the classifier that left this pathologist’s case out

for training. The distribution of predictions from these classifiers is depicted in

a boxplot posted to social media by our bot (Fig 4.1 at lower left). An outlier is

indicated by a circle in the boxplot, and a circle in a strongly different direction

that the boxplot’s interquartile range may suggest the “outlier classifier sanity

check” has been encountered.
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Classifier repurposed, so if prediction suspect, then search suspect

If the Z-test of our distribution of predictions indicates the evidence in favor of

a particular disease state, e.g. nontumor, is not due to chance alone, but this

is surprising to a pathologist’s expectations, the pathologist may consider the

prediction to be suspect, so search results may be suspect as well. This is our

second prospective sanity check, which requires a pathologists’s expert opinion.

Whole-patient prediction and disagreement detection Our method calcu-

lates the probability of a disease state per image, but given 1-4 images are in a

tweet, we are left with two questions. First, what is the overall probability that

this patient has a particular disease state, e.g. malignant? For this, we make the

naı̈ve statistical independence assumption of probabilities, multiply the predic-

tion probabilities, and normalize them to sum to one. Second, what should we

do when the prediction for one image differs from another for a given patient?

In this case, the bot includes a warning in its tweet message and suggests mis-

takes are more likely, but we do not consider this a prospective sanity check,

because images could indeed show different disease states.

Deep learning prediction heatmaps comparable to pathologist expectations

Heatmaps from our deep learning can localize disease states within an image

(Figs 4.5, S4.21), offering our third prospective sanity check to pathologists. If

localization of predicted disease is suspect, then prediction may be suspect, and

search may be suspect.

142



S4.5.10 Machine learning interpretability for search

Hand-engineered feature interpretability

We use existing hand-engineered visual features extensively (Fig S4.19). Im-

age features for machine learning (Sec S4.5.8) discusses the combination of color,

texture, and edge features we use (Fig S4.19). All of have human-defined math-

ematical or algorithmic behavior written in software code. We know by defi-

nition a color histogram feature is invariant to rotation, because such a feature

may simply be the sum of each pixel’s red value in an image. Similarly, ro-

tating an image should not change the diagnosis, so rotation invariance makes

sense for disease state prediction. We also know properties of other features,

such as the important Local Binary Patterns Pyramid (LBPP) [124]. LBPP is glob-

ally color-invariant because it operates on grayscale pixel values, not color pixel

values. This may provide robustness to staining protocol differences between

institutions. LBPP is globally scale-invariant because it employs a pyramid

for multi-scale representation. This is the same pyramid used by PHOG [125].

This pyramid may support robust machine learning despite pathologists shar-

ing images at different magnifications. LBPP is locally rotation-invariant be-

cause it consists of rotation-invariant local binary patterns at every level of the

multi-scale pyramid representation. These rotation-invariant local binary pat-

tern features are locally robust to localized orientation changes of a pathology

image, e.g. minor perturbations in the orientation of a cell or tissue fiber. In con-

trast, PHOG consists of oriented gradients at every pyramid level, rather than

rotation-invariant local binary patterns. LBPP is not globally rotation-invariant

because, like PHOG, most pyramid grid cells are spatially localized, so a rotated

image will have a different feature representation. LBPP is a texture feature be-
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cause it compares the value of a center pixel to the value of many pixels at a

particular radius from the center. Prior groups have used texture features to

distinguish stroma, lymphocytes, necrosis, etc. Hand-engineered feature inter-

pretability provides a simple foundation on which to build more abstract levels

of interpretability. We can also reason about what features do not improve dis-

ease state prediction, e.g. SIFT features, which are thought to cover nuclei.

Random Forest feature importance

We use Random Forest feature importance to infer which features are important

for disease state predictions. Hand-engineered visual features, clinical covari-

ates, and deep learning features are concatenated together for a Random Forest

to learn to predict disease state, so this single Random Forest classifier provides

interpretability of each feature, in context together (Fig 4.4). We use this to in-

fer broad principles, e.g. important clinico-visual features of disease state are

texture (e.g. Local Binary Pattern Pyramid features) and tissue type covariates.

Moreover, Random Forest feature importance identified several deep features

were more important than the others for disease state prediction, so we focused

our analyses on these important deep features.

For a before-and-after-histopathology-image-training comparison, we also

consider feature importances when training a Random Forest with ImageNet2048

features (Fig S4.20). ImageNet2048 deep features have not been trained on

histopathology images or the tissue type covariate. We observe that before

histopathology training, these 2048 deep features are complemented by scale-

invariant color-invariant edge features (i.e. PHOG) and rotation-invariant color

features (color histograms and Color Correlograms). This may suggest disease
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Random forest feature importance
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Figure S4.20: Random Forest feature importance for prioritizing only-natural-
image-trained deep features, when non-deep, ImageNet2048, and clinical features are
used together for learning. As in Fig 4.4, we use the mean decrease in accuracy to
measure Random Forest feature importance. However, we consider here ImageNet2048
features, rather than the 100 deep features trained on histopathology images. No vi-
sual features here are designed with histopathology in mind or trained on histopathol-
ogy data. This provides an interpretation of what hand-engineered and only-natural-
image-trained deep features are important for disease state prediction, before train-
ing the deep neural network on histopathology images and covariates. In this way,
we train a Random Forest on 2412 hand-engineered features, ImageNet2048 features,
and the tissue type covariate. The tissue type covariate is exceedingly important here,
highlighting how disease state is reported in our data in a tissue-type-specific man-
ner (Fig 4.8C1), e.g. infection is more likely reported in lung than breast. Pyramid
histogram of oriented gradient (PHOG) features and color features (color histograms
and Color Correlograms) are important hand-engineered features complimentary to the
ImageNet2048 features. PHOG is scale-invariant (due to pyramids) and color-invariant
(due to grayscale), while said color histograms and Color Correlograms are rotation-
invariant. Taken together, these important hand-engineered features may provide ro-
bust pathology representations for Random Forest learning. Such representations may
complement ImageNet2048 features, with “r50non1227” being the most important of
these 2,048 features from the Global Average Pooling layer of a ResNet-50 trained only
on the natural images (e.g. cats and dogs) of the ImageNet dataset. Thus of all 2,048
ImageNet2048 features, r50non1227 may be prioritized first for interpretation (Fig S4.21
shows r50non1227 interpretation via heatmaps). Random Forest feature importance in the
supplement discusses further (Sec S4.5.10).
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state prediction benefits from these (i) invariant properties and (ii) features of

color/stain intensity and distribution, that are not encoded in the ImageNet2048

feature representation. Moreover, the tissue type covariate is strikingly impor-

tant here (Fig S4.20). Therefore, after training the ResNet-50 on histopathology

images and the tissue type covariate (Fig 4.3), we find (i) the tissue type co-

variate importance is reduced presumably because the ResNet-50 has to some

extent learned to represent tissue type in its 100-dimensional feature vector,

and (ii) scale-invariant and/or color-invariant texture features (e.g. Local Bi-

nary Pattern Pyramid [LBPP] and Local Binary Patterns [LBP]) become increas-

ingly important presumably because the ResNet-50 has to some extent learned

to represent pathology-relevant edges and color in its 100-dimensional feature

vector while texture features are underrepresented. Thus texture features (i.e.

LBPP/LBP), are important for disease state prediction, but the deep neural

network did not learn similar texture features from the pathology data and

learning methods at hand. We likewise reason that LBPP/LBP texture fea-

tures may have low importance in the context of ImageNet2048 features, because

ImageNet2048 features may represent similar texture, so LBPP/LBP are redun-

dant with ImageNet2048 for visual texture features predictive of disease state.

We note several of the most important ImageNet2048 features (e.g.

r50non1227, r50non1121, ...) have an importance measure (i.e. mean decrease

in accuracy) greater than the most important hand-engineered features (e.g.

PHOG364, ColorHistogram21, ...), which may suggest for disease state predic-

tion that ImageNet2048 features represent more predictive information than the

best hand-engineered features we tested (Fig S4.20). Alternatively, the high im-

portance of ImageNet2048 features may be due to biases in Random Forest learn-

ing to choose features that take on many different values [130,98], as ImageNet2048
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features do.

In principle, for classification, any interpretable classifier may be used in

place of the Random Forest, e.g. logistic regression, support vector machine,

or generalized additive model [100]. A careful choice here may demonstrate fa-

vorable accuracy and interpretability. We choose a Random Forest as a simple

baseline that requires (i) little tuning or preprocessing, (ii) learns interpretable

nonlinear relationships among features and covariates, and (iii) provides a mea-

sure of similarity for search.

Marker mention and SIFT features excluded from Random Forest feature im-

portance analysis We excluded from our Random Forest feature importance

analysis the marker mention covariate and SIFT features, primarily because

both did not improve 10-fold cross-validation prediction performance when

using an ensemble of classifiers, which performed best for prediction (Fig 4.9:

marker 0.8035±0.0043 vs 0.8025±0.0021, U = 3, p = 0.7; SIFT 0.8035±0.0043

vs 0.8014±0.0022, U = 7, p = 0.4, two-tailed Wilcoxon rank-sum test). More-

over, SIFT reduces performance when an ensemble is not used (0.7846±0.023

vs 0.7796±0.0019, U = 85, p = 0.0004114). This may suggest that for suffi-

ciently strong disease state classifiers using H&E images and tissue covariates,

the marker mention covariate and SIFT features provide at best only redundant

information. For example, if the decision to order a marker test, e.g. IHC, is

typically based on the H&E, and a classifier is sufficiently accurate at predicting

disease state from H&E, the decision to order a marker test provides no addi-

tional disease state information. Secondarily, we excluded the marker mention

covariate because it is based on the clinical opinion of all pathologists comment-

ing on this case. Disease state is based on the diagnosis, which is also a clinical

147



opinion. Rather than seeking to explain one opinion in terms of another opin-

ion, we seek to explain opinions in terms of objective information in the H&E or

clinicals, e.g. tissue type. We note 10-fold cross-validation may provide inflated

measures of performance, so for a less inflated examination of the possible con-

tributions of the marker covariate, SIFT features, and deep features, we turn to

leave-one-pathologist-out cross-validation for search. Disease state search, first

pan-tissue pan-disease method discusses this (Sec 4.3.6).

Interpretability of important deep features through activation maps

Deep neural networks have a restricted field of view, but this is an advantage

for interpretability, because one can systematically sweep a trained neural net-

work across an image to localize deep feature activations. At each location in

the sweep, a 224×224px image patch is fed to the trained neural network for

interpretation. However, our Random Forest uses a set representation of the

deep features, formed as a sum of deep feature vectors systematically sampled

throughout the overall image of arbitrary size (Fig 4.1). Therefore, for spatial

localization of disease state we make heatmaps to depict the deep feature acti-

vations at those sampled locations. These heatmaps indicate a correspondence

between the most important deep features and the class labels. This approach

facilitates deductive reasoning about predictions, e.g. (i) in Fig 4.5 the image

overall is predicted by the deep-learning-random-forest hybrid classifier to be

low grade (not shown), (ii) this classifier includes deep features (Fig 4.1C), (iii)

a deep feature of ours is by definition a vector sum of images (Fig 4.1C) shown

in the grid (Fig 4.5D2), (iv) the second most important deep feature (r50 30 in

Fig 4.4) is known to correspond to low grade (e.g. Fig 4.5C2), (v) r50 30 is active
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Figure S4.21: Interpretable spatial distribution of deep learning predictions and fea-
tures of multiple cases. We compare four cases side-by-side, in the manner of Fig 4.5.
The most important histopathology-trained deep feature is r50 46 (Fig 4.4 at left), which
predicts the majority class, e.g. A3 left corresponds to A4 upper left. The second most
important feature (r50 30) predicts the second most abundant class, low grade. The
third most important feature (r50 85) predicts the third most abundant of three classes,
nontumor. The strong class correspondence in important deep features may suggest
that removing the top layer’s three class-predictor neurons may incur only a small
loss of learned information (Fig 4.3B top). Shown in A5 at left is the most important
only-natural-image-trained deep feature (i.e. ImageNet2048), “r50non1227” (Fig S4.20).
Continuing left-to-right in A5 we show ImageNet2048 features in decreasing order of
importance: r50non1121 (2nd more important), r50non1170 (3rd), r50non2028 (4th),
r50non1028 (5th), and r50non1591 (6th). As expected, we find no intelligible pathology-
related interpretation of these ImageNet2048 features in these heatmaps, because these
features are not trained on histopathology data. (A) B.X.: metastatic lobular carcinoma
in satellite lymph node, where malignant activation is high throughout, except the
lower right background. (B) C.S.: juvenile polyp, where nontumor activation is high
both for the lentil at lower center (specifically rows 0-2 of columns 1-2 of the 5x5 grid of
panel B2, where the lower left corner is row 0 of column 0) and the dark Ascaris ova at
right (specifically the dark cluster in row 1 of column 4, and evident to some extent in
rows 0-2 of columns 3-4), showing the breadth of the nontumor disease state category.
(C) R.S.: is a proliferating epidermoid cyst. Despite viral wart change, we consider this
in the low grade disease state (Fig S4.18). This example also illustrates a different image
size and microscope eyepiece field of view artifact. (D) Y.R.: pulmonary vein lined by
enlarged hyperplastic cells, which we consider to be low grade disease state, and D4
center top highlights these low grade cells.
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Figure S4.22: Disease state clusters after dimensionality reduction. As in Fig 4.6
we apply the UMAP [101] algorithm to determine if there are clusters of patient cases
that have meaningful groups of features for the prediction of disease state. However,
to investigate if cluster quality can be improved through dimensionality reduction, we
first apply principal components analysis (PCA) to reduce hand-engineered feature di-
mensionality from 2,412 to 100 principal components, and follow the same procedure
for ImageNet2048 features. In practice, PCA is a common preprocessing step for the
t-SNE clustering algorithm [131], but UMAP claims to have no computational restric-
tions on input dimension (so PCA is not expected to be required for UMAP) [101]. (A1)
We show that 100 principal components explain 98.98% of the variance of the 2,412
hand-engineered features. Our histopathology-trained deep features are similarly 100
dimensions (Figs 4.3C, 4.6C1). (A2) As expected, PCA preprocessing does not quali-
tatively change UMAP clusters based on hand-engineered features. (B1) We show that
100 principal components explain 92.35% of the variance of the only-natural-image-
trained ImageNet2048 deep features. (B2) As expected, PCA preprocessing does not
qualitatively change UMAP clusters based on ImageNet2048 deep features. We conclude
the vague clusters from hand-engineered features or lack of clusters from ImageNet2048
is not a UMAP-related artifact of their high dimensionality, but instead simply means
these features do not clearly group patients by disease state.

with a value of more than 0.5 for images shown in the grid center (Fig 4.5D2),

(vi) therefore the classifier predicts low grade partly because images near the

grid center have the low grade feature. Similar to our work, previous work

used Random Forest feature importance for feature selection on a pretrained

deep neural network [132], though to the best of our knowledge we are the first

to use Random Forest feature importance for feature selection on a deep neural

network retrained on the same task as the Random Forest.
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S4.5.11 Machine learning methods discussion

Because our image feature vectors are so wide, e.g. 2,412 dimensions (Fig S4.19)

or more, we found best results with Random Forests when the number of fea-

tures to consider for a decision/split was half (rounded up) of the total attribute

count. This was especially important for covariates, e.g. the tissue covariate for

disease state prediction. For search using Random Forest similarity, we grew

each tree to a maximum depth of 10.

Deep learning

Cross entropy loss for learning We optimize the deep neural network with

an unweighted cross entropy loss (Eqn 4.1, where Iyi∈Ci is the indicator function

being 1 when the example x class label yi is class Ci, and 0 otherwise)9, for mini-

batches of size N = 64 224×224px images and typically C = 3 classes (nontumor,

low grade, malignant). We use stratified bootstrap sampling for each epoch, so

all classes have equal weight.

Lunweighted({x1, x2, ..., xN}) = −
1
N

N∑
i=1

C∑
c=1

[Iyi∈Ci]log(pmodel[yi ∈ Ci]) (4.1)

ResNet-50 learning For our deep learning, we freeze no layers of the ResNet-

50. We train end-to-end with learning rate of 0.01 and Nesterov accelerated

gradient momentum of 0.9 [133,134,135]. We use Keras’ learning rate decay of 10-5,

which reduces the learning rate each batch. Moreover, we follow a learning rate

schedule, where learning rate is divided by 100 until the end of epoch 1, but by

10 until the end of epoch 3. We train with Mixup [97], mixing according to draws

9For this formula please see https://github.com/keras-team/keras/issues/6444
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Figure S4.23: Deep learning performance curves. Loss and accuracy for training and
validation sets, for one fold of 10-fold cross-validation, using a ResNet-50 to predict dis-
ease state, for individual 224×224px image patches. Validation accuracy improves with
training, though high validation accuracy may suggest (i) the ground truth label may
not apply universally throughout the image which is larger than 512×512px, (ii) sam-
ples whose state may not fit with our three-class disease state schema, (iii) mislabeled
samples, (iv) deep learning overfit. Indeed, we see in many of our images mixtures
of diseases and disease-free tissue, so (i) may be especially likely, and more advanced
methods, such as multiple instance learning, may overcome this as we acquire more
data. Observing that validation accuracy improved with training, we proceeded with
this simple supervised deep learning approach as a proof-of-principle.

from a beta distribution with alpha = 1.4 and beta = 0.4. Our data augmen-

tation is random flips, random free rotations, grayscale Gaussian noise in RGB

color space (mean=0, stdev=0.5), and random brightness adjustment (uniform

distribution, -0.05 to 0.05). We white-balance images before processing.

Freezing layers lowered validation accuracy. Alternative architectures such

as DenseNet, Inception, and Xception trained more slowly and lowered valida-
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tion accuracy. We do not report these results.
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Figure S4.24: Deep features. We appended a 100 neuron fully connected layer on
top of a ResNet-50 to learn a concise 100-dimensional “bottleneck” feature vector rep-
resentation of a 224×224px image patch (Fig 4.3). This feature vector takes different
distributions, depending on regularization. The top row shows a 100-dimensional acti-
vation distribution as standard deviations from the mean, and training proceeds left to
right. The bottom row shows the same activation distribution as the top row, but as a
histogram, with training proceeding from dark red at the top to orange at the bottom.
(A) Feature values are centered at 0.5 when L1 regularization on the activation value
before a sigmoid squashing function is applied, because a sigmoid transforms a 0 value
to 0.5. (B) Feature values are approximately bimodal when L1 regularization on the
activation value after sigmoid squashing is applied, because L1 regularization enforces
sparsity by penalizing non-zero values. (C) Feature values are more strongly bimodal
when our binarizing regularization (a.k.a. centered L1 regularization, Fig S4.25C3,D)
on the activation value after our centered soft clipping activation function is applied,
because this regularization penalizes values near 0.5 and centered soft clipping satu-
rates to 0 or 1 more quickly than a sigmoid. We ultimately chose our centered L1 reg-
ularization and centered soft clipping activation to represent the deep feature space for
disease state prediction, because (i) it performed better with Random Forest learning
over feature vector sums of a set of multiple images (Fig S4.25A), (ii) it demonstrated
comparable validation accuracy in deep learning (Fig S4.23), (iii) Random Forests have
a bias to select features that take many values [130,98] so approximately binary deep fea-
tures may reduce this bias by having a restricted distribution of values, and (iv) we
believe approximately binary deep features to be simple and interpretable as set scalar
cardinality, i.e. counters (Fig 4.5 and Eqn 4.8).
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Figure S4.25: Sigmoid vs centered soft clipping performance. (A) Random Forest
AUROC when ResNet-50 trained with sigmoid activation function with L1 regulariza-
tion, versus centered soft clipping activation function with centered L1 regularization.
Centered soft clipping demonstrates higher performance. Increasing the number of re-
gions of interest (ROI) images in a deep set from 13 to 21 (Fig 4.1C shows 21) improves
performance slightly. Quantizing features to either 0 or 1 slightly reduces performance
when using centered soft clipping. (B) Comparison of sigmoid activation function with
soft clipping [136] (Eqn 4.2) and our centered soft clipping (Eqn 4.3). Our centered soft
clipping is centered at x=0 and steeper than sigmoid, which we argue is amenable for
learning interpretable (Fig 4.5) and sharply binary hash codes. (C) Comparison of L1
(Eqn 4.11), L2, and our centered L1 (Eqn 4.13) regularizers in two dimensions, x0 and
x1. Our L1 regularizer penalizes values close to 0.5, to encourage a binarized feature
representation. (D) Comparison of L1 and our centered L1 regularizers, in one dimen-
sion, for clearer depiction of our centered L1 regularizer’s margin m = 0.1 (Eqn 4.13),
for stable learning and vanishing gradient avoidance.

Deep set learning feature interpretation

As our ResNet-50 deep neural network trains (Fig S4.23), a 100-dimensional

feature representation is learned (Fig S4.24), by the 100-neuron layer we ap-

pend to the ResNet-50 (Fig 4.3C). A spatially-localized empirical interpretation

of deep learning predictions and feature activations is available in Figure 4.5.

We analytically interpret our deep features through their activation functions,
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regularization, and relationship with set scalar cardinality, below.

Centered soft clipping activation function definition To learn sharply binary

features from the deep learning, we define a steep activation function, called

centered soft clipping (CSC) (Fig S4.25B and Eqn 4.3). This is derived from soft

clipping (SC) [136], which is not centered at x=0 (Fig S4.25B and Eqn 4.2). Like

centered soft clipping, the sigmoid and hyperbolic tangent activation functions

centered at x=0, but they are not as steep. There is a steepness parameter (p) in

[centered] soft clipping, and we let p = 2 for our experiments (Eqns 4.2, 4.3).

SCp(x) =
1
p

log(
1 + epx

1 + ep[x−1] ) (4.2)

CSCp(x) =
1
p

log(
1 + ep[x+0.5]

1 + ep[x−0.5] ) (4.3)

Centered soft clipping in the limit as Heaviside step function Furthermore,

we note in the limit p → ∞, centered soft clipping converges to the Heavi-

side step function H(x), a type of indicator function which is 1 for positive

values, 0 for negative values, and 0.5 for zero values (Eqn 4.6). In the limit

p → ∞, CSCp(x) is a binary indicator of the presence or absence of a feature

in a 224×224px image patch (Fig 4.1B), representing binary logic. Smaller val-

ues, e.g. p = 2, allow the representation of a small amount of probabilistic

uncertainty regarding this presence or absence, where this area of uncertainty is
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infinitesimally small for p→ ∞.

lim
p→∞

CSCp(x) =
1
p

[log(1 + ep[x+0.5]) − log(1 + ep[x−0.5])] (4.4)

lim
p→∞

CSCp(x) =



1
p [log(1 + 0) − log(1 + 0)] = 0

p = 0 ∀x < 0,

1
p [log(1 + ep(0.5)) − log(1 + 0)] = p(0.5)

p = 0.5 ∀x = 0,

1
p [p(x + 0.5) − p(x − 0.5)] = p

p = 1 ∀x > 0

(4.5)

lim
p→∞

CSCp(x) = H(x) =



0 ∀x < 0,

0.5 ∀x = 0,

1 ∀x > 0

(4.6)

Deep feature as set scalar cardinality To our Random Forest, a deep feature is

the scalar cardinality (Eqns 4.7-4.8) of the set of these presences measured at 21

different locations throughout the original image (Fig 4.1C). Here, x represents

one of the 100 features from the trained layer atop the ResNet-50 in Figure 4.1B,

and I is an indicator function of set membership.

Card(set) = |set| = |{x1, x2, . . . , xN}| =

N=21∑
n=1

I(xn) (4.7)

=
∑

n

H(xn) =
∑

n

[ lim
p→∞

CSCp(xn)] ≈
∑

n

CSCp(xn) ∀p > 0 (4.8)

Data as Bernoulli process, deep features, and expected value To consider

some input data passed through the ResNet-50, we model a random set as a

Bernoulli process, with each set member taking some value on the interval (0,∞)

at probability ϕ, otherwise some value on the interval (−∞, 0). Let Pϕ(x) be a

Bernoulli trial that is (0,∞) at probability ϕ, otherwise (−∞, 0) A Heaviside step

function (Eqn 4.6), which our centering soft clipping (CSC) activation function

approximates in the limit of p→ ∞, transforms this Pϕ(x) to a standard Bernoulli
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trial taking value 1 at probability ϕ, otherwise 0. Thus the cardinality of this ran-

dom set is proportional to the Bernoulli trial’s expected value E = ϕ (Eqn 4.10).

In a sense, for a fixed set size e.g. N = 21, the Random Forest may learn what

thresholds of E of these deep features are predictive of the classes of interest, in

the context of the other available deep and non-deep features (Fig 4.1C).

Card(set) = |set| = |{Pϕ(x1),Pϕ(x2), . . . ,Pϕ(xN)}| =
N∑
n

H(Pϕ(xn)) = (4.9)

=

N∑
n

[ lim
p→∞

CSCp(Pϕ(xn))] = NE(x) = Nϕ (4.10)

Centered L1 regularizer in the context of Gaussian initialization Neural net-

work weights are often initialized with Gaussian noise having mean of zero [133],

so centering the activation function at zero removes initial bias towards learning

a 0 or 1 when combined with our centered L1 regularizer (Eqn 4.3). Whereas a

standard L1 regularizer (Eqn 4.11) penalizes all non-zero values, our centered

L1 regularizer penalizes values close to 0.5 (Eqn 4.13), with the assumption that

all values are between 0 and 1, which is true for values from centered soft clip-

ping (Eqn 4.3).

L1(x0, x1) = |x0 + x1| (4.11)

CL1penalty(x,m) = max(m, 0.5 − |x − 0.5|) − m (4.12)

CL1(x0, x1,m) = |CL1penalty(x0,m) + CL1penalty(x1,m)| (4.13)

To approximately binarize deep features, our centered L1 regularizer penalizes

output values close to 0.5, which occur when x = 0 with sigmoid and centered

soft clipping activations. (Fig S4.25D). For stable learning, and to help avoid

the vanishing gradient problem [137,138] from values infinitesimally close to 0 or

1, our centered L1 regularizer has no penalty for values less than 0.1 or greater
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than 0.9. Restated, we let the L1 regularizer’s margin parameter m ∈ [0, 0.5] be

m = 0.1.

Binary hash code learning Lin et al [139]. use deep learning with sigmoid ac-

tivations to learn binary hash codes for search of clothing images. We intend

to learn sharply binary hash codes with centered soft clipping and centered

L1 regularization together, for interpretability, pathology search, and set rep-

resentation learning. We find centered soft clipping performed slightly better

for classification (Fig S4.25A) and provided a small but significant increase in

search performance (Fig 4.10B).

S4.5.12 Disease state search distance function and performance

Pathology search performance is shown in Figure 4.10B, and detailed in Ta-

ble S4.1. We found a combined distance measure (Eqn 4.14) worked best for

search (i.e. Table S4.1 top row). The combined distance between two exam-

ples (i.e. Dist(x0, x1)) is the number of trees in the Random Forest (i.e. 1000),

minus the Random Forest similarity of the covariates and non-deep features

(i.e. SimRF(x0, x1)), plus five times (i.e. αS IFT = 5) the L1 norm of the 5 largest

SIFT cluster medoids vector sum (i.e. L1SIFTk5(x0, x1)), plus the L1 norm of the

top three deep features from each example (i.e. L1Deep3(x0, x1)). For Deep3, we

use the top three most class-associated features of example x, one such feature

for each of the three classes (nontumor, low grade, or malignant per Fig 4.5C).

We initially found these three features using Random Forest similarity (Fig 4.4),

but subsequently identify these features by minimizing the feature’s error with
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Table S4.1: Case similarity search performance in detail. Precision@k for search as
shown in Figure 4.10B, with additional experiments. To estimate 95% confidence in-
tervals, recall standard error of the mean is the sample standard deviation (i.e. stdev)
divided by

√
10, since we perform ten replicates. This table and further details continue

on the following page.

Method († = plotted in Fig 4.10B) prec@k=1 prec@k=2 prec@k=3 prec@k=4 prec@k=5
prec@k=6 prec@k=7 prec@k=8 prec@k=9 prec@k=10

RandomForest(2412 + tissue + marker) + 0.7618±0.0018 0.7003±0.0016 0.6595±0.0011 0.6321±0.0005 0.6124±0.0008
5×SIFTk5 + Deep3 + 0.01×ImageNet2048† 0.5977±0.0006 0.5846±0.0006 0.5739±0.0008 0.5649±0.0008 0.5571±0.0004

RandomForest(2412 + tissue + marker) + 0.7567±0.0016 0.6988±0.0015 0.6597±0.0007 0.6319±0.0007 0.6129±0.0011
5×SIFTk5 + Deep3 + 0.001×ImageNet2048 0.5981±0.0011 0.5853±0.0007 0.5750±0.0006 0.5660±0.0009 0.5582±0.0008

RandomForest(2412 + tissue + marker + 0.7566±0.0014 0.6981±0.0010 0.6594±0.0006 0.6317±0.0010 0.6124±0.0012
ImageNet2048) + 5×SIFTk5 + Deep3 0.5974±0.0009 0.5850±0.0006 0.5748±0.0006 0.5658±0.0010 0.5580±0.0008

RandomForest(ImageNet2048 + tissue + 0.7517±0.0025 0.6940±0.0014 0.6563±0.0008 0.6294±0.0012 0.6113±0.0012
marker) 0.5962±0.0008 0.5842±0.0010 0.5738±0.0007 0.5644±0.0006 0.5565±0.0006

RandomForest(2412 + tissue + marker) + 0.7341±0.0012 0.6639±0.0010 0.6256±0.0009 0.5969±0.0005 0.5784±0.0004
5×SIFTk5 + Deep3 + 0.1×ImageNet2048 0.5620±0.0006 0.5492±0.0005 0.5381±0.0003 0.5296±0.0004 0.5220±0.0003

RandomForest(2412 + tissue + marker) + 0.7006±0.0026 0.6493±0.0023 0.6196±0.0017 0.5983±0.0009 0.5826±0.0007
5×SIFTk5 + Deep3† 0.5698±0.0007 0.5597±0.0007 0.5511±0.0008 0.5440±0.0007 0.5380±0.0005

RandomForest(2412 + tissue + marker) + 0.6991±0.0023 0.6483±0.0022 0.6194±0.0012 0.5984±0.0009 0.5833±0.0008
1×SIFTk5 + Deep3 0.5708±0.0007 0.5610±0.0007 0.5519±0.0006 0.5443±0.0008 0.5382±0.0005

RandomForest(2412 + tissue + marker) + 0.6983±0.0016 0.6479±0.0018 0.6187±0.0017 0.5977±0.0012 0.5828±0.0009
Deep3 0.5705±0.0011 0.5604±0.0009 0.5516±0.0006 0.5442±0.0005 0.5381±0.0006

RandomForest(2412 + tissue + marker) + 0.6982±0.0026 0.6491±0.0013 0.6177±0.0013 0.5965±0.0013 0.5811±0.0007
5×SIFTk5 + EnsDeep3 0.5687±0.0007 0.5591±0.0011 0.5505±0.0010 0.5432±0.0010 0.5376±0.0011

RandomForest(2412 + tissue + marker) + 0.6974±0.0025 0.6474±0.0016 0.6182±0.0015 0.5970±0.0014 0.5815±0.0007
EnsDeep3 0.5689±0.0009 0.5594±0.0007 0.5510±0.0007 0.5440±0.0008 0.5381±0.0007

RandomForest(2412 + tissue + marker) + 0.6948±0.0032 0.6449±0.0021 0.6154±0.0016 0.5941±0.0016 0.5791±0.0014
5×SIFTk5 0.5668±0.0011 0.5569±0.0011 0.5479±0.0008 0.5404±0.0002 0.5344±0.0007

RandomForest(2412 + tissue + marker) + 0.6935±0.0029 0.6439±0.0021 0.6152±0.0012 0.5943±0.0016 0.5793±0.0015
1×SIFTk5 0.5669±0.0012 0.5569±0.0012 0.5484±0.0009 0.5412±0.0008 0.5350±0.0008

RandomForest(2412 + tissue + marker + 0.6918±0.0030 0.6436±0.0021 0.6166±0.0020 0.5965±0.0017 0.5819±0.0010
SIFTk5) + Deep3 0.5699±0.0010 0.5608±0.0009 0.5518±0.0008 0.5443±0.0008 0.5380±0.0008

RandomForest(2412 + tissue + marker)† 0.6908±0.0021 0.6435±0.0017 0.6148±0.0015 0.5941±0.0013 0.5793±0.0016
0.5671±0.0014 0.5568±0.0009 0.5482±0.0009 0.5409±0.0012 0.5351±0.0009

RandomForest(2412 + tissue) + Deep3 0.6602±0.0022 0.6129±0.0019 0.5845±0.0014 0.5656±0.0010 0.5530±0.0005
0.5419±0.0008 0.5333±0.0006 0.5265±0.0010 0.5209±0.0010 0.5156±0.0005

RandomForest(2412 + tissue)† 0.6533±0.0025 0.6064±0.0023 0.5784±0.0013 0.5599±0.0010 0.5481±0.0009
0.5386±0.0008 0.5297±0.0009 0.5227±0.0008 0.5167±0.0007 0.5119±0.0007

RandomForest(2412 + tissue + 0.6527±0.0024 0.6073±0.0027 0.5803±0.0014 0.5638±0.0018 0.5518±0.0016
SIFTk5) + Deep3 0.5412±0.0016 0.5331±0.0012 0.5262±0.0010 0.5202±0.0012 0.5148±0.0010

L1(ImageNet2048) 0.6432±0.0000 0.5839±0.0000 0.5543±0.0000 0.5346±0.0000 0.5204±0.0000
0.5099±0.0000 0.5002±0.0000 0.4930±0.0000 0.4874±0.0000 0.4830±0.0000

RandomForest(ImageNet2048) 0.6406±0.0046 0.5875±0.0028 0.5572±0.0021 0.5390±0.0017 0.5253±0.0019
0.5144±0.0013 0.5057±0.0009 0.4988±0.0008 0.4934±0.0008 0.4887±0.0007

RandomForest(2412 + tissue + marker) + 0.6376±0.0014 0.5875±0.0016 0.5549±0.0010 0.5351±0.0009 0.5214±0.0009
SIFT 0.5119±0.0005 0.5034±0.0008 0.4961±0.0006 0.4900±0.0004 0.4851±0.0005

RandomForest(2412 + tissue + marker + 0.5728±0.0022 0.5329±0.0023 0.5108±0.0013 0.4969±0.0009 0.4874±0.0010
SIFT)† 0.4803±0.0011 0.4751±0.0008 0.4701±0.0007 0.4654±0.0008 0.4617±0.0007

RandomForest(2412) + Deep3 0.5720±0.0036 0.5363±0.0027 0.5153±0.0021 0.5014±0.0024 0.4915±0.0016
0.4839±0.0015 0.4774±0.0009 0.4728±0.0010 0.4692±0.0008 0.4658±0.0007
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Table S4.1: Case similarity search performance in detail (continued). L1(. . . )
indicates distance is the L1 norm of the feature vector. RandomForest(. . . ) indicates
distance is the number of trees in the forest (i.e. 1000) minus Random Forest similarity
calculated on the feature vector. Tissue and/or marker covariate use are indicated by
“tissue” and/or “marker”, respectively. “2412”/“2412 features” indicates our 2,412
hand-engineered features are used (Fig S4.19). However, “ImageNet2048” indicates
the 2,048 top-level features are used from a ResNet-50 trained only on ImageNet
images. No histology images are used to train this ResNet-50’s 2,048 features, but
these features are summed over 21 locations, just as the ‘histology-image-trained
‘Deep” features are (Fig 4.1C). “Deep” indicates the full 100-dimensional feature
vector is used (Fig 4.1B,C). “Deep3” indicates only the top 3 class-correlated features
are used (Fig 4.5, see Eqn 4.14 for combining distances). “EnsDeep3” indicates the
top 3 class-correlated features are used, averaged across three neural networks in
an ensemble. “SIFT” indicates all SIFT interest points are summed to represent
an image. “SIFTk5” indicates the 5 largest of 25 medoids are summed to repre-
sent an image. “5×SIFTk5” indicates the SIFTk5 vector is multiplied by five (i.e.
αSIFT = 5), which changes L1-based distances (Eqn 4.14). We find best perfor-
mance for “RandomForest(2412 + tissue + marker) + 5×SIFTk5 + Deep3”, which
is 1000 minus Random Forest similarity, plus five times L1(SIFTk5), plus L1(Deep3).

Method († = plotted in Fig 4.10B) prec@k=1 prec@k=2 prec@k=3 prec@k=4 prec@k=5
prec@k=6 prec@k=7 prec@k=8 prec@k=9 prec@k=10

RandomForest(2412 features)† 0.5640±0.0024 0.5283±0.0025 0.5085±0.0018 0.4955±0.0021 0.4854±0.0014
0.4775±0.0012 0.4717±0.0010 0.4667±0.0010 0.4631±0.0007 0.4600±0.0006

L1(2412 features)† 0.5479±0.0000 0.5124±0.0000 0.4927±0.0000 0.4831±0.0000 0.4746±0.0000
0.4672±0.0000 0.4626±0.0000 0.4568±0.0000 0.4536±0.0000 0.4510±0.0000

RandomForest(Deep + tissue + marker) 0.5455±0.0020 0.5206±0.0018 0.5067±0.0013 0.4964±0.0006 0.4895±0.0010
0.4839±0.0008 0.4796±0.0007 0.4758±0.0006 0.4727±0.0008 0.4701±0.0006

RandomForest(2412 + tissue + Deep) 0.5427±0.0025 0.5135±0.0015 0.5001±0.0015 0.4915±0.0017 0.4860±0.0011
0.4806±0.0010 0.4756±0.0007 0.4719±0.0007 0.4690±0.0007 0.4671±0.0007

RandomForest(SIFT)† 0.4636±0.0024 0.4489±0.0021 0.4389±0.0016 0.4353±0.0013 0.4326±0.0009
0.4304±0.0011 0.4282±0.0008 0.4266±0.0008 0.4249±0.0009 0.4235±0.0009

L1(SIFT)† 0.4630±0.0000 0.4495±0.0000 0.4399±0.0000 0.4376±0.0000 0.4324±0.0000
0.4296±0.0000 0.4268±0.0000 0.4260±0.0000 0.4252±0.0000 0.4242±0.0000

L1(SIFTk5) 0.4205±0.0000 0.4127±0.0000 0.4125±0.0000 0.4109±0.0000 0.4107±0.0000
0.4107±0.0000 0.4102±0.0000 0.4104±0.0000 0.4112±0.0000 0.4105±0.0000

RandomForest(SIFTk5) 0.4102±0.0050 0.4097±0.0020 0.4087±0.0017 0.4088±0.0014 0.4089±0.0013
0.4092±0.0017 0.4090±0.0015 0.4088±0.0015 0.4087±0.0012 0.4088±0.0011

RandomForest(2412 + tissue), 0.3967±0.0044 0.3991±0.0036 0.3999±0.0033 0.3996±0.0030 0.4001±0.0033
permutation test† 0.3999±0.0027 0.4000±0.0029 0.3996±0.0030 0.3997±0.0027 0.3998±0.0026
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respect to a class label in the training data, for computational expediency.

Dist(x0, x1) = 1000 − SimRF(x0, x1) + [αSIFT]L1SIFTk5(x0, x1) + L1Deep3(x0, x1) (4.14)

median median 95% CI mean stdev mean 95% CI
prec@k=1 0.7819 0.7499-0.8065 0.7470 0.1167 0.6978-0.7896
prec@k=2 0.7237 0.6643-0.7482 0.6941 0.0967 0.6550-0.7300
prec@k=3 0.6766 0.6320-0.6938 0.6523 0.1030 0.6115-0.6922
prec@k=4 0.6373 0.6000-0.6769 0.6304 0.0975 0.5920-0.6676
prec@k=5 0.6112 0.5771-0.6563 0.6123 0.0962 0.5742-0.6501
prec@k=6 0.5982 0.5401-0.6451 0.5984 0.0931 0.5622-0.6345
prec@k=7 0.5858 0.5236-0.6378 0.5847 0.0907 0.5494-0.6203
prec@k=8 0.5736 0.5117-0.6301 0.5741 0.0879 0.5399-0.6079
prec@k=9 0.5620 0.5042-0.6230 0.5644 0.0886 0.5296-0.6003
prec@k=10 0.5526 0.4964-0.6132 0.5558 0.0884 0.5210-0.5899

Table S4.2: Case similarity search performance per-pathologist. Precision@k per-
pathologist, corresponding to Fig 4.10C at right, for the best performing search method
RandomForest(2412 + tissue + marker) + 5×SIFTk5 + Deep3 + 0.01×ImageNet2048, c.f. Ta-
ble S4.1. Leave-one-pathologist-out cross-validation is repeated ten times. We consid-
ered 24 of 25 pathologists for this analysis, excluding one pathologist who shared no
human acceptable H&E images for disease state prediction (Fig S4.14 details accept-
ability criteria). Each included pathologist’s performance is averaged over these ten
repetitions. This average performance is plotted in Fig 4.10C, where the 24 lines corre-
spond to 24 pathologists, and error bars are standard error for these ten replicates. For
precision@k=1 mean, each of the 24 pathologists’ ten-repetition average precision@k=1
is averaged and reported. In this way, the mean prec@k=1 (i.e. 0.7470) is what preci-
sion@k=1 may be expected for a pathologist whose data we have not seen before, when
averaged over many images for that pathologist. Bootstrapped confidence intervals
(CI) for median and mean are shown for 10,000 replicates. There is not a significant
difference between the means and medians, so any differences may be due to chance
alone.

S4.5.13 Supplementary Disease state search results

Clinical covariates improve search performance

We ask if pathology-specific clinical covariates improve search performance.

Including the tissue type covariate significantly improves performance com-

pared to not using this covariate (0.5640±0.0024 vs 0.6533±0.0025, U =
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100, p = 0.0001796). We find including the marker mention covariate signif-

icantly improves performance further (0.6533±0.0025 vs 0.6908±0.0021, U =

100, p = 0.0001796). Therefore including pathology-specific clinical covariates

for pathology search is currently justified, because these improve search perfor-

mance. We reason that disease states are reported at tissue-type-specific rates,

and cases that mention marker tests (e.g. IHC) tend to be more similar to other

cases that mention marker tests. Often, marker tests are used to subtype ma-

lignancies (e.g. TTF-1), but this is not always the case (e.g. Ki-67). We believe

this is the first multimodal classifier that demonstrates improved search perfor-

mance when combining pathology imaging features with clinical covariates (i.e.

tissue type and mention of marker tests) that may be missing for some patients

(Fig 4.10B).

In the context of other features, nuclear features of disease are better repre-

sented by the most prevalent SIFT clusters rather than all SIFT

Used alone, all SIFT is better than chance, but does not complement other

features We ask if cell nuclei features, as represented by SIFT, may represent

disease state, and if so, which SIFT representations perform better than others

for pathology search. Inspired by continuous bag-of-words methods that rep-

resent a context as a vector sum of words [129] and bag-of-visual-words methods

that leverage SIFT [140], our simplest baseline detects all SIFT interest points in

an image, then takes the sum of all these SIFT feature vectors to represent an

image overall. This way, an image is represented by a 128-dimensional SIFT

set representation, where the set cardinality is equal to the number of SIFT in-

terest points in the image, which varies among images. Because SIFT features
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are non-negative and cover nuclei, the magnitude of this vector may increase

as nuclear density increases. This performs better than chance when used alone

(0.4636±0.0024 vs 0.3967±0.0044, U = 100, p = 1.083e-05), but reduces perfor-

mance when used in the context of our 2,412 hand-engineered features, tis-

sue covariate, and marker covariate (0.6908±0.0021 vs 0.5728±0.0022, U = 100,

p = 0.0001796). We conclude that naı̈vely using SIFT features this way to esti-

mate nuclear density allows limited discrimination of disease state when used

alone, but does not complement other features when used together for pathol-

ogy search.

SIFT learning challenging, but a combined distance function of L1 norm and

Random Forest similarity improves search In light of the aforementioned re-

duced performance with SIFT, we ask if Random Forest similarity contributes

to this performance reduction. We observe the SIFT L1 norm and SIFT Ran-

dom Forest similarity performance differences may be due to chance alone

(0.4630±0.0000 vs 0.4636±0.0024, U = 40, p = 0.4429). The Random Forest

does not appear to learn from this SIFT representation. We additionally ob-

serve search performance is reduced less when adding the SIFT L1 norm to Ran-

dom Forest similarity as a combined distance measure (Eqn 4.14), rather than

training the Random Forest on SIFT features (0.5728±0.0022 vs 0.6376±0.0014,

U = 0, p = 0.0001796). This may suggest the Random Forest overfits or cannot

learn from these continuous bag-of-words SIFT features, but this may be mit-

igated by a combined distance function that does not rely on Random Forest

learning from SIFT features (Eqn 4.14).
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SIFT clusters provide complimentary information for search We then ask

if SIFT may provide complimentary information for search, when using SIFT

to estimate nuclear shape and edge distributions, rather than nuclear density.

For this approach, we (i) detect all SIFT interest points in an image, (ii) form

25 clusters using k-medoids++ clustering with the L1 norm of the SIFT feature

vectors for all interest points, (iii) retain the 5 medoids corresponding to the

5 most abundant clusters, and (iv) take the sum of the medoid SIFT features

to represent the image overall. This way, an image is represented by a 128-

dimensional SIFT set representation, where the set cardinality is always 5, the

number of retained medoids. We call this a SIFTk5 set representation, for k=5

medoids from k-medoids++ clustering. Because SIFT features represent shapes

and edges, and because we use only the most abundant cluster medoids, this

vector may represent the prevailing shapes and edges of nuclei in the image

overall. This performs better than chance when used alone (0.4102±0.0050 vs

0.3967±0.0044, U = 100, p = 0.0001817), and significantly improves performance

when used in the context of 2,412 features, tissue covariate, and marker covari-

ate (0.6908±0.0021 vs 0.6935±0.0029, U = 19.5, p = 0.02308), though the effect is

small.

Combined distance function coefficient allows SIFT prioritization, but care-

ful calibration not needed Because SIFT feature vector magnitude is small,

and the number of medoids we retain is small (i.e. 5), we ask if search would

benefit from a SIFT coefficient greater than one in the combined distance func-

tion (i.e. αSIFT in Eqn 4.14), to increase the relative contribution of SIFT features

to search. We let αSIFT = 5. When combined with deep features, which we dis-

cuss later, we report a very small but significant improvement in search perfor-
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mance when αSIFT = 5 (0.6983±0.0016 vs 0.7006±0.0026, U = 21.5, p = 0.03423)

but not when αSIFT = 1 (0.6983±0.0016 vs 0.6991±0.0023, U = 34, p = 0.2408).

However, search performance is not significantly different depending on the

choice of αSIFT here (0.6991±0.0023 vs 0.7006±0.0026, U = 30, p = 0.14). There-

fore, we do not observe compelling evidence in favor of selecting αSIFT carefully,

and caution that careful selection risks overfit. We note αSIFT = 5 may be viewed

as a micro-optimization, but this effect is very small. It appears this effect is

carried by SIFTk5 rather than αSIFT, so we conclude it may be better to focus on

feature engineering or learning, rather than coefficient selection. We report this

to show α selection in the combined distance function has only a slight effect.

Deep features synergize with other features, informing search more than nu-

clear SIFT features, but less than clinical covariates

For deep features, a combined distance function of L1 norm and Random

Forest similarity also improve search Because search performance improves

when considering SIFTk5 set features in a combined distance function, we ask

if search performance improves when considering deep set features in a com-

bined distance function (Eqn 4.14). We observe that naı̈vely concatenating the

full 100-dimensional deep set representation with other features for Random

Forest learning reduces performance (0.6533±0.0025 vs 0.5427±0.0025, U = 100,

p = 0.0001796). We then select the interpretable top 3 most class-associated

deep features (Figs 4.4, 4.5D1-3) and observe using these in a combined distance

function improves search performance (0.6533±0.0025 vs 0.6602±0.0022, U = 4,

p = 0.0005773). Performance remains improved when including the marker

mention covariate (0.6908±0.0021 vs 0.6983±0.0016, U = 0, p = 0.0001817).
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Given that both SIFT set features and deep set features both perform better in

a combined distance function rather than within Random Forest similarity, we

suspect our Random Forest parameters facilitate sensitive learning from few

covariates, but may be oversensitive to a large number of set features that each

take many different values. Machine learning methods discussion in the supple-

ment discusses (Sec S4.5.11). We conclude an interpretable reduced represen-

tation of deep set features improves search performance when considered in a

combined distance function, though this effect is small. We expect the effect to

increase with more data, because deep learning can refine feature representa-

tions in a scalable data-driven manner, and because more advanced deep learn-

ing methods may be possible with more data.

Deep features from supervised learning inform search more than nuclear

SIFT features Given that both SIFTk5 and Deep3 features improve search

performance, we ask if pathology-specific Deep3 features improve search per-

formance more than pathology-agnostic SIFTk5 features. Indeed, we observe

Deep3 features improve search performance significantly (i) more than SIFT fea-

tures (0.6983±0.0016 vs 0.6376±0.0014, U = 100, p = 0.0001817), (ii) more than

1×SIFTk5 features (0.6983±0.0016 vs 0.6935±0.0029, U = 94, p = 0.0003248), and

(iii) more than 5×SIFTk5 features (0.6983±0.0016 vs 0.6948±0.0032, U = 83.5,

p = 0.01251). We conclude learned pathology-specific deep features inform

pathology search more than hand-engineered pathology agnostic SIFT features,

though SIFT may cover nuclei.

Deep features and SIFT features are complementary To determine if SIFT

and deep features represent non-overlapping concepts in pathology, we ask if
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combining SIFTk5 and Deep3 features improves performance, compared to us-

ing either one, in the context of other features. We observe Deep3 features signif-

icantly improve performance when considering 5×SIFTk5 and all other features

(0.6983±0.0016 vs 0.7006±0.0026, U = 21.5, p = 0.03423). We likewise observe

5×SIFTk5 features significantly improve performance when considering Deep3

and all other features (0.6948±0.0032 vs 0.7006±0.0026, U = 7, p = 0.0004871).

These small effects suggest SIFTk5 and Deep3 features represent complementary,

rather than redundant, pathology features for search.

Deep features improve search performance less than tissue and marker clini-

cal covariates Interested in the relative importance of deep features and clini-

cal covariates, we then ask if Deep3 features or the tissue type covariate are more

important for search. In the context of our 2,412 hand-engineered features, we

find Deep3 features improve search performance less than the tissue type covari-

ate (0.5720±0.0036 vs 0.6533±0.0025, U = 0, p = 0.0001806). We additionally ask

if Deep3 features or the marker mention covariate are more important for search.

In the context of our 2,412 features and tissue type covariate, we find Deep3

features improve search performance less than the marker mention covariate

(0.6602±0.0022 vs 0.6908±0.0021, U = 0, p = 0.0001817). We conclude that for

our dataset’s size and diversity, search benefits most from carefully identifying

and integrating simple clinical covariates for context, rather than focusing on

advanced image analysis techniques such as deep learning.
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Deep features trained only on natural images outperform hand-engineered

features for search, and offer best performance when combined with other

features

Deep features trained only on natural images offer best measured perfor-

mance, when combined with other features To determine if deep convolu-

tional neural networks trained only on natural images (e.g. cats and dogs) repre-

sent useful information for histopathology disease state search beyond what we

have represented, we ask if ImageNet2048 features improve search performance

beyond the best performance we could achieve without ImageNet2048 features.

Therefore, we consider performance in the context of including 2412 hand-

engineered features, tissue type and marker mention covariates, SIFTk5 features,

and Deep3 features. We find ImageNet2048 features significantly improve search

performance to a substantial degree (0.7006±0.0026 vs 0.7618±0.0018, U = 0,

p = 0.0001817). We conclude for pathology search that there is complementary

information represented in the ResNet-50 deep neural network trained only on

natural images.

Deep features trained only on natural images outperform hand-engineered

features, in the context of clinical covariates Both (a) the ImageNet2048 fea-

tures from a deep convolutional neural network and (b) the 2,412 hand-

engineered features from a variety of human-designed published algorithms

are made for natural images, rather than histopathology images. The hand-

engineered features are intrinsically interpretable, because a human defined

each step of the algorithm’s behavior a priori. In contrast, deep convolutional

features are the result of many layers of nonlinear transformations defined

168



through training on data to minimize a loss function, so deep features are not in-

terpretable as human-designed features are. To determine the pathology search

performance penalty, if any, from using (a) less interpretable deep features of

natural images rather than (b) more interpretable hand-engineered features of

natural images, we compare search performance using (a) ImageNet2048 fea-

tures to (b) the 2,412 hand-engineered features. In the context of tissue type

and marker mention clinical covariates, we find ImageNet2048 features signif-

icantly improve search performance, again to a substantial degree, compared

the the 2,412 hand-engineered features (0.6908±0.0021 vs 0.7517±0.0025, U = 0,

p = 0.0001806). Excluding these covariates, to compare only ImageNet2048 fea-

tures to the 2412 hand-engineered features alone, we again find ImageNet2048

performs significantly better (0.5640±0.0024 vs 0.6406±0.0046, U = 0, p =

0.0001817). In the context of tissue type and marker mention clinical covari-

ates, we find (a) ImageNet2048 features also significantly improve search per-

formance compared to (b) the 2,412 hand-engineered features combined with

both SIFTk5 features and histopathology-trained Deep3 features (0.7517±0.0025

vs 0.7006±0.0026, U = 0, p = 0.0001817), which indicates ImageNet2048 features

are the most important visual feature we measured. In the context of clinical

covariates and ImageNet2048 features, search performance is significantly (albeit

only slighty) improved when also considering the 2,412 hand-engineered fea-

tures, SIFTk5 features, histopathology-trained Deep3 features (0.7517±0.0025 vs

0.7618±0.0018, U = 0, p = 0.0001806), demonstrating the synergy among these

features. We conclude deep features are more effective than hand-engineered

features for encoding histopathology images for search. This result may be con-

founded due to ImageNet2048 features encoding every image corner-to-corner

in a grid fashion (which does not omit pixels, as grid cells have typically >50%
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overlap), while the 2,412 features are all based on a 512×512px center crop

(which omits some pixels from the original image) (Fig 4.3C). However, we find

best search performance when combining deep features, hand-engineered fea-

tures, and SIFTk5 features.

Deep features trained only on natural images have intrinsically general prop-

erties that inform histopathology search, rather than learned nonlinear re-

lationships of these features informing histopathology search Given that

natural-image-derived ImageNet2048 features provide a powerful representa-

tion for histopathology image search, we ask if this representational power

comes from (a) general-purpose properties from the ImageNet2048 features

themselves that hold even for pathology or (b) the Random Forest learning

pathology-specific nonlinear relationships among the ImageNet2048 features for

histopathology applications. To test this, we compare search performance of

(a) the L1 norm of the ImageNet2048 features to (b) the Random Forest similar-

ity trained on the ImageNet2048 features. We find the L1 approach marginally

outperforms the Random Forest similarity approach, but this is not statisti-

cally significant, so any performance differences may be due to chance alone

(0.6432±0.0000 vs 0.6406±0.0046, U = 70, p = 0.1153). This suggests the Ran-

dom Forest does not learn nonlinear relationships among ImageNet2048 fea-

tures that improve histopathology search performance. Rather, this suggests

general properties of the ImageNet2048 features themselves are important for

histopathology search. Moreover, we do find some ImageNet2048 features are

more important than others for disease state prediction (Fig S4.20). However,

we did not observe interpretable correspondences between ImageNet2048 fea-

ture activations and histopathology (Fig S4.21). We also do not observe that
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ImageNet2048 features form clusters of patients (Fig 4.6B). We conclude that al-

though ImageNet2048 features empirically perform well, it may be desirable to

use features that both empirically perform well and have general properties that

“make sense” for histopathology.

S4.5.14 Supplementary Experimental design and evaluation

We evaluate our classifiers using 10-fold cross-validation, which is the default

evaluation scheme in Weka [102]. Our data are saved in ARFF file format, so

our findings can be reproduced in Weka without the need for writing software

code. This approach allows software code we write to be compared against

the unperturbed gold standard of Weka defaults. We follow Weka’s default of

ten replicates of 10-fold cross-validation, to estimate bounds of accuracy and

Area Under Receiver Operating Characteristic (AUROC) performance metrics.

This approach will give reproducible results wherever Java and Weka run, e.g. a

laptop, a server, a supercomputer, or a cloud computer. This approach will work

on all operating systems that support Java, e.g. Linux, Mac, and Windows.

S4.5.15 Supplementary Computational hardware and software

We use Weka version 3.8.1 [102] on a ASUS Intel core i7-6700HQ 2.6GHz 4-CPU

laptop with 16GB RAM for baseline analyses and Random Forests This laptop

was also used for software development and automatically downloading Twit-

ter data from participating pathologists. This laptop ran the Windows 10 oper-

ating system, which in turn ran the Oracle VirtualBox virtual machine manager,
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which in turn ran Debian Jessie 3.16.7-ckt20-1+deb8u3 and Linux kernel 3.16.0-

4-amd64. Weka and our other pipeline components ran within Debian.

For deep learning, we use Keras version 2.1.4 and TensorFlow version 1.10.0

on an MSKCC supercomputer with several Nvidia Titan-X GPUs and dozens of

Nvidia GTX 1080 GPUs running CUDA 8 and cuDNN 5.

S4.5.16 Supplementary Comparison with prior studies

Pathology-agnostic neural nets, SIFT nuclear features, and texture features

Many other groups perform pathology search with deep neural networks or

hand-engineered features. Komura et al [88]. and Hegde et al [89]. use a deep

neural network for pathology image search, taking a pathology-agnostic ap-

proach by not performing machine learning on histopathology images. Hegde

et al. go further by comparing search performance of their neural network

method, called SMILY, to a simpler baseline method using Scale-invariant fea-

ture transform (SIFT) [112]. Zhang et al. suggest SIFT interest points tend to cover

cell nuclei [141]. However, Lowe, the author of SIFT, notes SIFT features do not

represent color or texture, “features [. . . ] use only a monochrome intensity im-

age [and] texture measures [. . . ] could be incorporated” [112]. For pathology

search this may handicap SIFT compared to a neural network that can repre-

sent color or texture. Indeed, when we train our neural-network-random-forest

hybrid classifier (Fig 4.3) on pathology images, we find features that represent

texture (Local Binary Patterns Pyramid [124], Local Binary Patterns [123]) and color

(Color Histogram [119], Color Correlogram [121], etc [120,122]) are the most important

non-deep visual features (Fig 4.4). For decades, texture and color have been
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known to be important in pathology [113], and this motivates reproducible pro-

cedures for staining and slide preparation. Recently, Linder et al [114]. report

Local Binary Patterns are important texture features to distinguish epithelium

from stroma in colorectal cancer. Kather et al [115] go further, using Local Binary

Patterns and other texture features to distinguish stroma, epithelium, immune

cells, normal tissue, etc in colorectal cancer. Linder posit Local Binary Patterns

are robust to changes in staining, illumination, and camera settings – useful

properties for building a robust classifier from a globally distributed dataset

like ours. Though we find using SIFT features alone for search performs better

than chance, we find SIFT-based features alone perform worse that every other

alternative feature representation we tested (Fig 4.10, Table S4.1). This may sug-

gest that the visual signatures of disease state in pathology involve more than

covering cell nuclei, and some of these signatures may be uncovered by a Ran-

dom Forest [70] as nonlinear relationships of texture and color. For pathology

search, we use Random Forest similarity derived from our interpretable classi-

fier trained on pathology images, rather than require explicit similarity annota-

tions from pathologists as training data [63]. We find pathology-specific covari-

ates improve our classifier and search performance (Figs 4.9, 4.10B). A variety

of search approaches for pathology search, also known as Content-based image

retrieval (CBIR), have been reported [142,143], including SIFT [110], SIFT with neural

networks [111], and dimensionality reduction [144].

Pathology-specific neural networks

Otàlora et al [90]. take a transfer learning [11,85,86,87] approach to pathology search

by adding an auxilary layer on top of a frozen pretrained deep neural network.
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They train this auxilary layer to predict if a prostate image shows Gleason [145]

grade of 4 or more, or not. They do not report classification performance. The

auxiliary layer feature vector is used for prostate image search, and the search

is shown to perform better than a simple baseline, i.e. Color and Edge Directiv-

ity Descriptor (CEDD) [120]. We also use CEDD in our work and find it impor-

tant (Fig 4.4). However, our classifier training is pan-tissue and pan-disease,

neither specifically prostate nor specifically high Gleason. Like Otàlora, we

search PubMed (Fig 4.1). However, to filter PubMed for histopathology im-

ages, Otàlora use a light microscopy detection algorithm [146] while we use a Ran-

dom Forest trained for H&E detection with leave-one-pathologist-out AUROC

of 0.95 (Fig 4.7). In prior work, we trained a deep neural network end-to-end

to predict SPOP mutation in prostate and repurposed the classifier for search [5].

Peng et al [147]. jointly train a deep neural network for prediction and search,

using colorectal histopathology images labeled with nine possible classes, i.e.

adipose tissue, background, cellular debris, lymphocytes, extra-cellular mucus,

smooth muscle, normal colon mucosa, cancer-associated stroma, and colorectal

cancer epithelium. However Peng do not report search performance as mean

average precision or precision@k for k=1,2,3,. . . ,10 (Fig 4.10B), so Peng’s results

may be difficult for others to interpret. Instead, Peng report how many images

had “perfect retrieval precision of 10 true neighbours”, and find their method

performs 30% higher than their baseline. Peng cite Cao [148] and Cao [149] for re-

porting this way, but both report mean average precision, so Peng search per-

formance between data sources are not clear to us.
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Computational pathology studies not pan-tissue pan-disease

For dermatopathology, Esteva et al[107]. predict if an image shows disease that

is benign, malignant, or either benign/malignant – but do not consider non-

tumoral disease such as infections. For a few tissues including prostate, Cam-

panella et al[109]. predict if an image shows cancer or not, but similarly do not

differentiate non-neoplastic from benign disease, which may be an important

clinical consideration [92]. Neither perform search. From optimal coherence to-

mography (OCT) imaging of eye pathology, De Fauw et al[108] predict referral

urgency as urgent, semi-urgent, routine, or observation. This is not a prediction

of disease state. De Fauw do not mention cancer, but instead focus on diseases

we consider to be nontumor, such as diabetes and macular degeneration. We are

not aware of any pan-tissue pan-disease datasets other than ours. We believe

our pan-disease method serves patients with diseases of poverty (e.g. many

forms of infection, ˜ 1
5 of diseases in our data) as well as patients with diseases of

af�uence (e.g. many forms of cancer, ˜ 2
5 of diseases in our data).

Deep and shallow learning not on same task

In the �eld of cardiology, deep learning has been trained on a separate task

(i.e. epicardial adipose tissue volume), then used by shallow learning (i.e. XG-

Boost) to predict myocardial infarction [150]. Our approach differs in that we

train both deep and shallow learning (i.e. a Random Forest) on the same task,

namely disease state prediction (Fig 4.3B,C). In principle, our approach allows

deep learning to, in a data-driven manner, derive features that are important

for disease state prediction, which may complement the hand-engineered fea-

tures and clinical covariates we use for shallow learning. Indeed, we �nd there
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work, these near-duplicates should be automatically detected. Duplicates may

artificially inflate performance metrics.

Disease state annotations vary in text

Our dataset is only as good as the accuracy of the hashtags and diagnoses made

by the collaborating pathologists and pathologists who comment on the cases.

The more pathologists that contribute to the database, the higher the risk for

errors and inconsistencies. Indeed we note some uses of the #bstpath hashtag

to describe breast pathology (Section S4.5.6). We should remember the fun and

voluntary nature of sharing cases on social media.

While our disease state text processing algorithms take a consensus vote

among the pathologists discussing the patient case, these methods are not per-

fect, and our manual annotations to correct this may be incomplete. We hope

that by sharing our data with the community, more corrections may be made,

improving the quality of our dataset.

Disease state evidence varies in images

For our Random Forest baselines, we crop images to convert rectangular images

to be uniformly square for the machine learning. However, pathologists may

include diagnostic information only at the extreme edges of an image that are

cropped out. A case of this from B.X. involves a hydatid cyst in the extreme right

of an image, which would be cropped out. This hydatid cyst indicates Echinococ-

Case at https://twitter.com/BinXu16/status/980404471833313280 “Kudo to
@drkennethtang @luishcruzc and @DrGeeONE The answer of this case can be seen in the right
corner of the 3rd picture. Dx: Echinococcus (hydatid cyst) with necrotizing pneumonia, abscess,
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cus infection, so the case is nontumoral. Our set-based deep learning approach

is an incomplete remedy to this problem, where we train on 224×224px image

patches sampled throughout the original image, then test using 21 224×224px

patches systematically sampled throughout the original image. Although this

approach samples the entire image, the remedy is incomplete in that the ground

truth is not uniform throughout the image. For example, it is only based on one

corner of the image that there is histological evidence of nontumor disease. It

may be helpful here to use more advanced methods, which make fewer assump-

tions about the ground truth and allow weaker supervision, but such methods

may come at a cost of requiring more data than we have currently.

Algorithm and labeling inaccuracies

We do not expect that our text classification algorithm (Fig S4.18) perfectly in-

terprets disease state from the text associated with an image. Moreover, we also

do not expect our manual annotation process to be perfect, e.g. some stains may

be incorrectly labeled as H&E, IHC, etc. We manually curate 10,000+ images, so

human error as low as 1% means a handful of images are incorrectly labeled,

but there could be more. By sharing our data with more pathologists and data

scientists, we intend to gather feedback and correct any inaccuracies here, then

measure disease state classification performance changes.

and granulomatous inflammation. Additional high power pictures attached.”
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No automated quality control

Finally, the size of the dataset is both a blessing and a curse. A large and di-

verse dataset is required to provide the most benefit to computational pathol-

ogy. However, quality control for such large datasets is most feasible if done

automatically, and automated quality control cannot deal with all issues. For ex-

ample, some pathology images include marks designating a particular patholo-

gist as the contributor of that image. Other pathology images have been marked

by pathologists with arrows and circles. Our automated quality control pipeline

enables us to rapidly discissues. For example, some pathology images include

marks designating a particular pathologist as the contributor of that image.

Other pathology images have been marked by pathologists with arrows and

circles. Our automated quality control pipeline enables us to rapidly discrim-

inate pathology from non-pathology images, but is not able to address these

other challenges. Future steps will need to be taken for more specialized quality

control.

S4.5.18 Supplementary Future directions

Acquiring more data

The first step is to expand the size of this dataset by recruiting more patholo-

gists via social media. With more data, we hope to improve performance on

discriminations that were the most difficult (e.g. those involving gynecological

pathology). More data may facilitate machine learning methods that discrimi-

nate between similar but less frequently used stains, such as H&E vs Diff-quik,

179



rather than H&E vs IHC. More data might also enable us to distinguish particu-

lar organs or tissues within a histopathology tissue type, e.g. distinguish kidney

tissue from bladder tissue. With increased sample size and increased tissue of

origin granularity, it may be possible to predict metastatic tissue of origin. Fi-

nally, a larger dataset might also include more rare cases that can be useful for

machine learning techniques that can support diagnoses.

Expanded and specific hashtags

A second step is advocacy on social media, for (i) sharing normal tissue data,

and (ii) expanded pathology hashtags. Normal tissue complements our exist-

ing “relatively unimportant” artifact and foreign body data, such as colloids

and gauze, which are typically not prognostic of disease. Normal tissue also

complements the description of tissue morphology in our data, if we tend to

have only cancerous or diseased tissue. Separately, more descriptive hashtags

may reduce our manual annotation burden, and obviate the need for us to ask

pathologists to clarify what stain was used or what the tissue is. Moreover,

molecular hashtags may complement the histology we see. However, we un-

derstand that for pathologists sharing cases on social media is probably a fun

and voluntary activity, rather than a rigorous academic endeavor, so it may not

be appropriate for us to suggest pathologists use terms from synoptic reporting

in hashtag format in their Tweets. Moreover, the size of tweets is limited to 280

characters, so more than 3-4 hashtags per tweets is probably infeasible. Some

pathologists are already close to this limit without using additional hashtags.

We encourage the adoption of hashtags that explicitly identify what stains

or techniques are used (this is not an exhaustive list):
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1. #he indicates there are one or more H&E-stained images in the tweets.

2. #ihc indicates there are one or more IHC-stained images in the tweets.

3. #pas indicates there are one or more periodic acid-Schiff images in the

tweets.

4. #diffq indicates there are one or more diff-quik images in the tweets. There

is a common misspelling of diff-quick, so our hashtag avoids this mis-

spelling.

5. #gross indicates one or more gross section images are in the tweets. This

is typically fresh cut tissue, e.g. an entire excised tumor or a large piece of

an organ.

6. #macro indicates an unmagnified picture of a microscopy slide. Unfortu-

nately, such pictures are occasionally referred to as gross.

7. #endo indicates one or more endoscopy images are in the tweets.

8. #ct indicates one or more CT scan images are in the tweets.

9. #xray indicates one or more X-ray images are in the tweets.

We encourage hashtags to describe not only the histological features of a

case, but also the molecular features of a case. Again, this hashtag list is far

from exhaustive.

1. #braf indicates the BRAF gene is known to be mutated, perhaps through

sequencing.

2. #msi indicates micro-satellite instability, which again may be evident from

sequencing.

3. #desmin indicates that the IHC used targets desmin.
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We encourage the adoption of hashtags that explicitly identify any artifacts,

art, or pathologist annotations/marks on the image.

1. #artifact or #artefact indicates there are artifacts or foreign bodies in one

or more images, such as colloids, barium, sutures, SpongostanTM, gauze,

etc. We encourage the tweets message text to identify what the artifact or

foreign body is.

2. #pathart is a hashtag in use today, but unfortunately it is used in two ways:

(i) to identify naturally-occurring and unmodified pathology images that

are “pretty” or “interesting” as natural works of art, and (ii) to identify

images that have been modified by the pathologist herself/himself to be

“funny” or “interesting”. The trouble is (i) is “acceptable” pathology for

analysis while (ii) is not. We advocate for the continued use of the #pathart

hashtag, but with clarification, below:

3. #drawn or #annotated indicates the pathologist made hand-drawn marks

on one or more images, such as arrows, circles, or artistic manipulations.

Artistic manipulations may include drawing exclamation points, question

marks, eyes, mouths, faces, skulls, cartoon bodies, etc on the image. So,

“#pathart #drawn” is likely a pathology image with artistic drawn marks

that prevents the image from being an “acceptable” pathology image for

analysis, while “#pathart” without “#drawn” is likely a pathology image

that is a naturally occurring unmodified histology image that is an “ac-

ceptable” pathology image for analysis.

4. Alternatively, “#pathfun” or “#pathdrawing” may refer artistically manip-

ulated pathology pictures, leaving “#pathart” exclusively for naturally-

occurring pathology that are “pretty” or “interesting” from an artistic per-
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spective.

We encourage the adoption of hashtags that give other information about

the image.

1. #pathbug is an existing hashtag that indicates a parasite or other co-

occurring non-human organism is depicted in one or more images in the

tweets. The #parasite tag is sometimes used instead.

2. #panel indicates one or more multi-panel images are in the tweets.

We encourage all adopted pathology-related hashtags to be registered in

an ontology, e.g. https://www.symplur.com/healthcare-hashtags/

ontology/pathology/. A hashtag ontology can standardize the hashtags

used, which in turn can (i) help pathologists in the same subspecialty find each

other, and (ii) simplify computational analyses of hashtag text.
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CHAPTER 5

CONCLUSION

Deep learning and whole slide images are staples in computational pathology

Computational pathology studies often apply deep learning to whole slide im-

ages, with applications including classification, detection, and segmentation [11].

Indeed, we similarly apply deep learning to whole slide images in chapter 2

and chapter 3. Whole slide images are high-quality micrographs, which are

amenable for deep learning, and other automated analyses.

Deep learning’s performance strengths demand ample data Deep learning

excels at processing large amounts of raw data [151], which is both a strength and

a weakness in computational pathology. Strong performance is possible without

human-guided feature engineering, because the deep neural network can in a

data-driven manner learn patterns from the raw data. A weakness is that strong

performance often requires large amounts of diverse data, e.g. the ImageNet

dataset has over 14 million images [51]. Datasets of this scale and diversity may

not be readily available in most computational pathology studies.

Data demands in light of pathology’s multimodal and multi-tissue nature

To reduce the amount of data needed for deep learning to achieve acceptable

performance, computational pathology studies often use pre-trained deep neu-

ral networks (i.e. “transfer learning” [3,4,5]), focus on a specific data modality

(e.g. H&E, chest X-ray, etc), and focus on one specific tissue at a time (brain,

breast, etc) [11]. Such focused study may not reflect a pathologist’s multimodal

approach to diagnosis in practice, which may consider together patient history,
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radiology, H&E, etc for a variety of tissues [21,24]. Restated, a pathologist may

be expected to both consider multiple data modalities to render a single di-

agnosis, and for many different tissues accurately diagnose the full range of

diseases from infection to malignancy. In contrast, often a single deep-learning-

based classifier for computational pathology may only work with a single data

modality and single tissue type [11]. Encouragingly however, there are recent de-

velopments in multi-tissue cancer-specific H&E-specific computational methods

for whole slide images, where regions of interest are randomly-sampled [152] or

pathologist-sampled [153]. As described in chapter 4, a recent method of ours is

multi-tissue, pan-disease (i.e. all diseases from infection to malignancy), and

multimodal (H&E with covariates for tissue type and marker stains e.g. IHC)

for pathologist-sampled regions of interest [3].

Crowd-sourcing makes data annotation and curation tractable We applied

a form of crowd-sourcing to address the challenge of obtaining a sufficiently

large, diverse, and multimodal dataset for deep learning in computational

pathology [3]. Specifically, we found the most success in respectfully asking

pathologists worldwide to collaborate with us, according to protocols approved

by an Institutional Review Board [IRB]. When we needed data, we asked pathol-

ogists. When we needed ideas, we asked pathologists. As more pathologists

collaborated with us, our pathology data and pathologist interactions became

more diverse and widely distributed. The hashtags and brevity encouraged

by social media kept text annotations of photomicrographs simple, facilitating

simple text analysis methods to determine ground truth labels for images. We

avoided the “needle in a haystack problem”, because pathologists would typ-

ically share regions of interest, rather than whole slide images. A caveat with
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our approach is that we manually curate each patient case from social media,

which is a time-consuming. We shared this curation task with other students, to

partially mitigate the time cost.

Future directions Whole slide images offer a complementary future direction,

now that we have established methods for regions of interest [3]. Publicly avail-

able patient cohorts of whole slide images, like TCGA, offer whole exome se-

quencing data that are uncommon to find even summarized on social media.

With some adaptation, we believe the global reach of our social media tools [3]

may increase the impact of our mutation prediction tools [5]. Through social me-

dia, we may potentially add mutation prediction capabilities to hospitals world-

wide where genomic sequencing is unavailable. Moreover, we found leveraging

public data, e.g. H&E photomicrographs in published case reports available in

PubMed Central, to qualitatively improve the utility of our patient case search

tools [3]. Such published case reports offer a depth of analysis that is not pos-

sible to fully express in brief social media posts. We look forward to working

with others to grow our nascent project, to connect pathologists worldwide and

improve patient well-being, according to United Nations goals.
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